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Abstract
Geofencing, the virtual demarcation of physical spaces, is widely
used for managing the localisation of Internet of Things (IoT) de-
vices. However, traditional localisation techniques face security
challenges indoors due to signal interference and susceptibility to
spoofing, often requiring extensive calibration or extra hardware,
limiting scalability. In this work, we propose ZeroTouch, a machine
learning-based system that leverages Received Signal Strength (RSS)
measurements from multiple receivers to improve the security of
geofencing without introducing additional deployment overhead.
While RSS-based localisation is known to have inherent security lim-
itations, we show that by aggregating RSS readings from multiple
anchor points and detecting anomalies using an autoencoder model,
ZeroTouch provides a practical and automated mechanism for verify-
ing whether a device is inside or outside a defined boundary. Rather
than serving as a standalone security mechanism, ZeroTouch en-
hances existing authentication frameworks by adding an additional
zero-touch security layer that operates passively in the background.
ZeroTouch eliminates manual calibration, removes the human-in-
the-loop element, and simplifies deployment. We evaluate our so-
lution in a realistic simulated environment and demonstrate that
it achieves high accuracy in distinguishing between in-room and
out-of-room devices, even in strong adversarial settings.

CCS Concepts
• Security and privacy → Security services; Authorization; Em-
bedded systems security; • General and reference → Experimen-
tation;
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1 Introduction
The Internet of Things (IoT) has transformed numerous sectors
by enabling interconnected devices to collect, exchange, and act
on data autonomously. As IoT expands into security-sensitive do-
mains — such as healthcare facilities, industrial plants, and critical
infrastructure — it becomes essential to enforce physical bound-
aries around secure areas [36]. In these scenarios, it is often not
crucial to determine the exact location of a device but rather its
presence within a predefined perimeter, such as a room or restricted
area. This is known as geofencing [47], which aims to establish
a virtual boundary and verify whether a device is inside or out-
side that boundary. Unlike precise localisation, geofencing usually
only requires a binary determination (in/out) of a device’s presence,
simplifying implementation while increasing security in use cases
where exact coordinates are unnecessary. Both indoor IoT local-
isation and geofencing have multiple applications, ranging from
access control and device commissioning to resource allocation and
monitoring.

Since Global Navigation Satellite Systems (GNSS∗) solutions,
such as GPS and Galileo, only work for outdoor localisation, al-
ternative methods have been developed for indoor localisation.
These are typically based on Time-of-Flight (ToF), Angle-of-Arrival
(AoA), or Received Signal Strength (RSS) and rely on communication
technologies such as Ultra-Wideband (UWB), Wi-Fi, or Bluetooth.
Among these, RSS stands out due to its simplicity, compatibility
with standard IoT devices, and ease of implementation. Moreover,
it does not require additional hardware, making it particularly at-
tractive for large-scale deployments. However, when measured at
a single receiver, RSS has been shown to be susceptible to manip-
ulation and environmental noise, making it unreliable for secure
localisation or geofencing [3, 4, 13, 49].

In this paper, we introduce ZeroTouch and demonstrate that com-
bining RSS data from multiple receivers enables anomaly detection
in location claims, thereby providing an additional layer of secu-
rity for geofencing. While an adversary may manipulate the RSS
readings of a few devices, aggregating data from multiple receivers
helps mitigate such attacks and adds an additional layer of defence,
akin to a slice in the Swiss cheese model [15]. ZeroTouch is not
intended to replace existing authentication methods but rather to
complement them by offering a frictionless, zero-touch mechanism
to enhance security. As a result, given that RSS is straightforward
to obtain from receivers, we enhance the security of such systems

∗https://www.gps.gov/systems/gnss/
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by relying on RSS-based geofencing. Our work provides a cost-
effective solution without requiring additional hardware, making it
a practical and scalable approach for real-world deployments. More
in detail, in this paper we present ZeroTouch, a geofencing system
that enhances security by leveraging machine learning to mitigate
the limitations of RSS for reliable perimeter-based presence detec-
tion. Our solution simplifies boundary verification while ensuring
security against spoofing, making it highly suitable for IoT deploy-
ments where exact coordinates are not required. In our work, we
use RSS of Wi-Fi as the metric to perform secure geofencing. While
our model is implemented using Wi-Fi’s RSS, the same approach
could be extended to other technologies such as Bluetooth, LoRa,
or Zigbee, as these protocols also provide RSS measurements. Since
our methodology relies purely on RSS patterns rather than protocol-
specific features, adapting it to different wireless technologies is
straightforward, provided sufficient anchor points exist within the
environment.

Contributions
In this paper, we present ZeroTouch, a novel and secure geofencing
system that leverages Received Signal Strength (RSS) measurements
and machine learning to verify whether a device is inside a defined
perimeter. Our contributions are summarised as follows:

• We demonstrate that combining RSS data from multiple in-
door receivers enables the detection of anomalies when a
device outside a pre-defined geofence area attempts to spoof
its location as being inside. This practical approach improves
security by leveraging the aggregated behaviour of RSS mea-
surements, making location spoofing more difficult for an
adversary who has already bypassed initial authentication
mechanisms.

• We design ZeroTouch, a secure and reliable mechanism to
verify location claims within the context of geofencing. By
using an autoencoder trained on legitimate RSS patterns, our
approach requires no manual calibration or setup, reducing
the human-in-the-loop factor to a minimum.

• We validate our approach in a well-defined and realistic
threat model and simulation setting, testing multiple adver-
sarial models, including attackers with varying transmission
power levels. Our experiments show that ZeroTouch achieves
more than 90% accuracy in distinguishing between inside
and outside devices.

• We provide a scalable framework that allows users to balance
accuracy and system usability by offering configurable levels
of verification mechanisms, enabling seamless adaptability
to diverse deployment scenarios.

Availability Statement. The entire source code and artefact un-
derlying this paper can be found at https://github.com/KULeuven-
COSIC/ZeroTouch.

2 Related Work
Various methods have been proposed to determine a device’s lo-
cation or its presence within a specific boundary in IoT systems.
Techniques such as Time-of-Flight (ToF), Angle-of-Arrival (AoA),
and Ultra-Wideband (UWB) have been widely studied and pro-
vide high accuracy. These methods typically require specialised

hardware and extensive calibration, making them less practical for
large-scale or dynamic IoT environments [34, 41, 42]. In contrast,
Received Signal Strength (RSS)-based localisation does not rely
on specialised hardware, making it attractive due to its simplicity
and inherent compatibility with standard IoT devices, despite its
limitations in accuracy and susceptibility to environmental inter-
ference [11, 19, 44, 48]. However, most existing RSS-based methods
prioritise accuracy, reliability, and ease of use without addressing se-
curity considerations. Security-focused RSS localisation approaches,
such as [28], primarily aim at mitigating the impact of malicious
nodes already present within the network. Differently, our work
targets the initial device verification and onboarding phase, estab-
lishing secure geofencing boundaries and effectively enhancing
security during device commissioning.

Several works in secure localisation focus on precise location esti-
mation using hardware-dependent methods or GPS modules, often
requiring specialised equipment, trusted anchor nodes, or extensive
calibration [10, 16, 25]. Other approaches employ machine learning
for anomaly detection, such as one-class SVMs or gradient descent,
but rely heavily on predefined anchor placements or high-quality
labelled data, limiting scalability in dynamic environments [27, 30].
Furthermore, these works overlook security as a critical vector,
lacking comprehensive threat models, security analyses, or eval-
uations against adversarial scenarios. Geofencing, which focuses
on binary in/out determination, provides a scalable alternative to
precise localisation in scenarios where exact coordinates are unnec-
essary. For example, geofencing has been used to restrict medical
devices to specific rooms in hospitals, ensuring they operate only
within authorised zones [1]. However, the current instantiation of
geofencing by the Wi-Fi Alliance has been found to be insecure
and vulnerable to distance manipulation attacks [38]. To the best of
our knowledge, no existing solution proposes a secure geofencing
framework or model that eliminates the need for additional hard-
ware or calibration. ZeroTouch fills this gap by providing a scalable,
hardware-independent, and machine-learning-driven approach to
secure geofencing.

Furthermore, several other works have explored RSS-based so-
lutions for device pairing and commissioning, aiming to reduce
the human-in-the-loop element and improve usability. For instance,
Move2Auth [50] and SFIRE [12] use RSS traces between an IoT device
and a smartphone but require user gestures or movement, while
SenCS [17] generates entropy from walking. Similarly, schemes
like Shake Well Before Use [22] and T2Pair [20] rely on gestures
or additional hardware, limiting practicality. Context-based ap-
proaches [2, 23] to prove proximity often suffer from security vul-
nerabilities or require extra equipment. A more straightforward
method involves GNSS-based commissioning [21, 37], which is
known to be ineffective indoors and susceptible to spoofing at-
tacks [13, 26, 29, 43]. ZeroTouch addresses these shortcomings by
leveraging inherently available RSS measurements from standard
IoT antennas to enable secure and autonomous device commission-
ing. By aggregating RSS data from multiple receivers and employ-
ing machine learning to detect anomalies, ZeroTouch significantly
mitigates location spoofing vulnerabilities associated with single-
receiver RSS systems. Additionally, ZeroTouch avoids the need for
additional hardware, calibration, or user interaction, making it a
cost-effective, scalable, and practical geofencing solution.

https://github.com/KULeuven-COSIC/ZeroTouch
https://github.com/KULeuven-COSIC/ZeroTouch
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3 System and Threat Model
This section first presents a comprehensive, high-level overview of
our proposed model, highlighting the key components of our solu-
tion. Next, it outlines the threat model and the associated security
assumptions.

3.1 System Model
In this paper we consider a geofence area as an indoor apartment
with several rooms. However, our model is applicable to any indoor
environment, including factory spaces, smart homes, or offices. The
core objective of our scheme is to securely verify a prover’s claim
of being physically present within the secure area.

Our model is built upon a few fundamental assumptions. First,
we assume that the rooms contain 𝑛 pre-installed wireless devices,
referred to as anchor nodes. These devices can be any IoT devices
(e.g., smart lamps, thermostats, speakers, plugs, cameras) commonly
found indoors. It is reasonable to expect that most indoor spaces
will already have a number of these devices in place. We also as-
sume these devices operate onWi-Fi; however, as stated earlier, our
solution applies to other wireless technologies as well, as it only
relies on capturing the RSS. Next, they are connected to the network
and maintain a secure connection with the central server, typically
via a TLS-secured channel. This secure connection ensures that
the communication between anchor nodes and the central server
is protected from eavesdropping and tampering. It is important to
note that we only need to be aware that anchor nodes are within the
secure area, and we do not need to know their exact location. This
eliminates the challenging task of precisely locating each anchor
node, simplifying deployment and reducing setup complexity, thus
making our model more practical for real-world applications. While
implementation on existing IoT devices may require additional soft-
ware capabilities (e.g., packet capture and RSS measurement), we
assume such functionality is available. Exploring practical deploy-
ment across diverse IoT platforms is out of scope for this work.

To prove its presence within the area, a new wireless device
(the prover) broadcasts a message, which is recorded by all anchor
nodes. Each anchor node measures the RSS and forwards these mea-
surements to the central server. The central server then aggregates
the RSS measurements from the anchor nodes and employs our
proposed verification algorithm to confirm the prover’s presence
within the geofence. Further details on the verification process are
provided in Sect. 4.

3.2 Threat Model and Security Assumptions
ZeroTouch is designed to defend against adversaries attempting to
bypass its boundary detection, allowing unauthorised devices to
spoof their presence and gain access within a protected perimeter.
Our threat model protects against external adversaries, that is, to
protect against outside attackers/devices without physical access
to the room. We assume a realistic adversary with the capability
to manipulate Received Signal Strength (RSS) readings during the
verification phase. We assume the training phase is secure and
the enrolment and initialisation part is controlled. Specifically, the
adversary is capable of adjusting its antenna transmission power,
thus performing a power-sweep attack, to alter the RSS values ob-
served by the anchor nodes within the boundary. While an even

more powerful ideal adversary with unlimited capabilities (e.g.,
perfect directional antenna control, precise knowledge of all anchor
positions, and complete understanding of the environment’s ge-
ometry) would theoretically be impossible to defend against using
only RSS, we opt to focus our analysis on more practical and realis-
tic threats. Specifically, the adversary has access to sophisticated
transmission equipment that allows control over the RSS values
perceived by anchor nodes within the boundary. By manipulating
transmission power, through signal amplification, the adversary
attempts to recreate the RSS signature expected from an in-bound
device. Our threat model also does not assume that the adversary
is operating within the legal signal strength limits as defined by
regulatory bodies such as the FCC in the United States† and under
the RED in the European Union‡ (which is typically restricted to
1 watt or 30 dBm). Additionally, the adversary has approximate
knowledge of the anchor nodes’ locations within the protected area,
and is not restricted to a single place during the attack procedure.

To define the operational environment and the limitations under
which ZeroTouch functions effectively, we make a few security and
environmental assumptions. Firstly, we assume that the anchor
nodes placed inside the room are tamperproof, and the adversary
is working with an omnidirectional antenna from outside, trying
to spoof their device into the insider network, as omnidirectional
antennas are most commonly used in IoT deployments due to their
uniform coverage and practicality [14, 33]. While directional anten-
nas could theoretically provide attackers with more control, they
require precise alignment with each receiver, which is impractical
in dynamic environments and computationally challenging. Omni-
directional antennas are far more realistic for adversaries due to
their ease of deployment and prevalence in IoT systems. Hence,
we align with practical and realistic threat models while ensuring
security.

4 ZeroTouch: High-level Overview
In this section, we explore the core elements of ZeroTouch.We begin
by outlining the primary steps of our solution. Next, we discuss
the machine learning aspect, specifically how the autoencoder is
utilised to detect potential attacks. Finally, we also discuss the neural
network baseline and how it compares to the autoencoder.

4.1 Protocol Flow
The protocol flow of ZeroTouch is structured into two main phases:
the initialisation and verification phase. These phases define the
necessary steps required to operate ZeroTouch.

Initialisation Phase. The first step of ZeroTouch is to capture
the current model of a room, a process we refer to as the initial-
isation phase. Initially, the anchor nodes communicate with one
another, transmitting standard messages and recording the corre-
sponding RSS values to establish an RSS profile for the environment.
Anymessage that includes the identity of an anchor node and can be
verified as originating from it can be used to measure the RSS. Next,
the RSS measurements from each anchor node are forwarded to the
central server, which aggregates them into a complete dataset from
various node positions. This process resembles an offline phase in

†https://www.ecfr.gov/current/title-47/chapter-I/subchapter-A/part-15
‡https://eur-lex.europa.eu/eli/dec_impl/2022/180/oj/eng

https://www.ecfr.gov/current/title-47/chapter-I/subchapter-A/part-15
https://eur-lex.europa.eu/eli/dec_impl/2022/180/oj/eng
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Figure 1: Overview of the protocol flow in ZeroTouch, illus-
trating the two main phases: the initialisation phase and the
verification phase.

wireless fingerprinting, where a database of RSS ‘fingerprints’ is
created [40]. The final step in the initialisation phase is to utilise
the measurements to train the machine learning model, ultimately
producing a model of the room. For this purpose, we have chosen
an autoencoder trained directly on the RSS measurements. Further
details about the autoencoder are provided in Sect. 4.2. The training
process is usually conducted only at the beginning; once the room
model is established, retraining is unnecessary unless there are
significant changes to the room’s characteristics, such as major
alterations in furniture arrangement or a drastic increase in the
number of occupants. In such cases, rerunning the initialisation
procedure is recommended. The initialisation phase is illustrated
in Fig. 1a, where anchor nodes (depicted as grey wireless devices)
communicate to measure RSS values. These measurements are then
forwarded to the server (blue dashed line), which uses them to train
the autoencoder and establish the room’s model.

Verification Phase. The next step involves a new device (the
prover) initiating the joining procedure by broadcasting a pre-
determined message to the anchor nodes, which includes the
prover’s ID. In the context of Wi-Fi, this message is analogous
to probe requests or action frames sent by devices to announce
their presence. As outlined in Sect. 3.1, the anchor nodes receive this
message, measure the corresponding RSS, and forward the measure-
ments to the central server. The central server then aggregates these
measurements and processes them using the previously trained
autoencoder. By comparing the reconstruction error to a predefined
threshold, the server identifies whether the measurements origi-
nate from a device inside or outside the room. Specifically, if the
reconstruction error exceeds the threshold, the measurements are
classified as anomalous, indicating that the device attempting to
prove its presence inside has failed and is thus determined to be
outside. Further details on the autoencoder and the thresholding
method used are provided in the following two subsections. The ver-
ification phase is illustrated in Fig. 1b, where a new device, depicted
in orange (the prover), broadcasts a message that is received by the
anchor nodes and used to determine the RSS. These measurements
are then forwarded to the server, represented by the blue dashed
lines, which uses the pre-trained autoencoder to verify the device’s
presence within the room.

4.2 Autoencoder-based anomaly detection
Before discussing the details of the autoencoder, let us first define
the classification problem mathematically. It can be expressed as:

𝑧 = 1{ 𝑓 (x)>𝛿 } , (1)

where:
x = (RSS1, RSS2, . . . , RSS𝑁 ) is the RSS-based vector representing

the RSS values recorded by 𝑁 anchor nodes.
𝑓 (x) is a classifier function that assigns an anomaly score to the

input x, indicating its alignment with expected behaviour.
𝛿 is the predefined threshold used to differentiate between inside

and outside classifications.
𝑧 represents the final decision, where 𝑧 = 1 denotes an anomaly

(outside transmitter) and 𝑧 = 0 indicates normal behaviour
(inside transmitter).

The indicator function 1{ 𝑓 (x)>𝛿 } evaluates whether the anomaly
score 𝑓 (x) is greater than the threshold 𝛿 . It is defined as:

1{ 𝑓 (x)>𝛿 } =

{
1, if 𝑓 (x) > 𝛿,

0, if 𝑓 (x) ≤ 𝛿.
(2)

In this formulation, the anomaly score 𝑓 (x) is compared to 𝛿 , with
the indicator function outputting 1 for outside classifications and
0 for inside classifications. This general formulation provides the
foundation for designing a suitable classifier. Later, we show how
an autoencoder effectively implements the function 𝑓 .

An autoencoder is an artificial neural network designed for unsu-
pervised learning, aimed at learning a good compressed representa-
tion of data [18]. It learns patterns and structures in unlabeled data
without explicit target outputs. The autoencoder typically consists
of two main components: the encoder and the decoder. The encoder
compresses the input data into a lower-dimensional representation,
known as the latent space. The decoder then takes this latent space,
the compressed form of the input data, and attempts to reconstruct
the original input as accurately as possible. Autoencoders have a
variety of applications, one of which is anomaly detection.

The concept of using autoencoders for anomaly detection is
well-established and has been applied in various fields [5]. In this
approach, the autoencoder is first trained on normal, non-anomalous
data, enabling it to reconstruct this data with minimal error, thereby
minimising the reconstruction or residual error (the difference be-
tween the output and input data). When presented with anomalous
data, the autoencoder typically fails to reconstruct it accurately,
resulting in significantly higher residual errors compared to non-
anomalous data. This behaviour demonstrates why the autoencoder
is well-suited to serve as the function 𝑓 defined earlier. The high
reconstruction error indicates that the data deviates significantly
from the expected (non-anomalous) patterns. Consequently, the
data can be classified as an anomaly if the residual error exceeds a
predefined threshold 𝛿 .

In our work, we train the autoencoder on a set of RSS measure-
ments originating from anchor nodes located inside the room. In
pattern recognition terminology, this approach is known as one-
class classification, where our training set consists exclusively of
one class — in this case, RSS measurements from indoor anchor
nodes. Consequently, the autoencoder learns to accurately recon-
struct RSS measurements characteristic of devices inside the room.
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This approach reduces the need for collecting extensive datasets of
potential anomalies, which may be impractical, incomplete, or infea-
sible. It allows us to rely solely on the anchor nodes already present
within the room for training. When a legitimate device inside the
room attempts to prove its presence, the reconstruction error is
expected to remain low, similar to that observed during training. In
contrast, when RSS measurements originate from a device outside
the room, the autoencoder generates high reconstruction errors,
facilitating their classification as anomalies (i.e., potential attacks).
Although many variations of autoencoder neural networks exist,
we demonstrate that employing a simple autoencoder with only a
single hidden layer already yields effective results. Further details
on the autoencoder used in our experiments are provided in Sect. 5.

Thresholding. Determining the threshold 𝛿 is a crucial com-
ponent of the detection process, as it dictates whether a device is
classified as genuine or anomalous. We aim to establish the thresh-
old a priori, relying solely on the reconstruction errors observed
during autoencoder training. This task is challenging, requiring
defining a threshold using only one-class data [45]. Several methods
can be used, and the approach we adopted is detailed in Sect. 6.1.

4.3 Baseline
Although our solution is based on an autoencoder, it is valuable
to establish a theoretical baseline as a reference point for compari-
son. In our case, the baseline is a neural network using supervised
learning, trained on RSS values obtained from both indoor and
outdoor devices. This means the training set contains both classes,
in contrast to the one-class training used in the autoencoder sce-
nario. This baseline represents the best-case scenario achievable
for this problem using neural networks. By comparing our solution
to this theoretical baseline, we can assess its relative performance
and observe the potential improvement that could be achieved if
data from both classes were available. However, it is important to
note that this baseline is not practical in real-world settings, as it
requires data from both classes, which can be challenging to collect.
Further information on the baseline, including its architecture and
performance metrics, is provided in Appx. A.

5 Simulation Setup
In this section, we explore the details of the simulation setup of
ZeroTouch, by outlining the specifics of the simulation environment.
For this purpose, we utilised Wireless InSite [35] to model indoor
radio wave propagation, allowing us to accurately simulate the RSS
values within a particular indoor environment [35]. The generated
data was subsequently analysed in MATLAB [39].

5.1 Wireless InSite
To evaluate a large number of transmitters and receivers, we opted
to obtain our RSS measurements through the well-established sim-
ulation software Wireless InSite [35]. Wireless InSite was chosen
for its advanced ray-tracing capabilities, which enable precise mod-
elling and analysis of various indoor environments for wireless
communication systems. It accounts for all relevant propagation
effects, including reflection, diffraction, transmission, scattering,
absorption, and the passage of signals through different surfaces
and materials, to accurately predict wave propagation and RSS.

Furthermore, academic studies have validated its results, demon-
strating that it closely resembles real-life scenarios [24, 32]. The
software supports both creating indoor environments and import-
ing pre-existing models. To make our simulations as realistic as
possible, we chose to import a complete architectural model of a
floor in an apartment building, designed by a practising architect.
This model, displayed in Fig. 2a, is part of a preliminary sketch
draft from an urban design feasibility study conducted by architects
at ZDL Studio [31]. The model includes multiple fully furnished
rooms, incorporating a variety of materials: glass for windows,
wood for furniture, drywall for interior walls, and concrete for
exterior walls, floors, and ceilings.

Measurement points.We have defined the geofence area as a
set of three rooms within the apartment, designating these rooms as
a secure ‘inside’ region while all other areas of the apartment model
are considered ‘outside’. The three selected rooms are marked with
red squares in Fig. 2b and Fig. 2c. Room one (Rx1) is the largest
room, located in the middle; room two (Rx2) is the smallest, located
at the bottom left; and room three (Rx3) completes the selection.
These rooms represent a realistic selection, as they vary in size,
shape, and furnishings. To obtain detailed RSS measurements, we
utilised Wireless InSite’s capability to set multiple measurement
points and created a grid of transceivers within each room. Each red
square represents a transceiver — a potential location for an anchor
node or an inside prover — spaced 0.5 m apart, allowing us to collect
measurements from various locations within each room, with a
total of 223 potential inside locations. Thus, in our simulation, each
red square can act as both a transmitter (in the case of a prover)
and a receiver (in the case of an anchor node). For example, one red
square can act as a transmitter while all other transceivers in the
room serve as receivers, enabling us to measure the RSS (in dBm)
from that particular transmitter at each location within the grid.

After defining the potential transceiver locations inside the ge-
ofence, we then establish the outside transmitter locations. These
represent potential positions of an attacker attempting to falsely
prove their presence within the secure geofence area. To maximise
the attacker’s advantage, we selected locations just outside the ge-
ofence boundaries, approximately 20 cm from the perimeter. These
outside locations, marked as green squares in Fig. 2b and Fig. 2c,
allow us to evaluate our solution under the worst-case conditions
from a security point of view. Additionally, we included a row of
potential transmitters on the right side, positioned away from the
geofence boundary, for further testing. Altogether, these selected lo-
cations represent the possible attacker positions we aim to evaluate
in our work, with a total of 102 outside transmitters.

Simulation parameters. The simulations were conducted un-
der standard atmospheric pressure (1013.25 millibars). Wireless
InSite offers various propagation models with different simula-
tion approaches; for our purposes, the X3D model was selected,
which simulates wireless transmission based on signal ray propa-
gation [35]. Ray spacing was set to 0.25 degrees, with simulation
parameters configured to include six reflections, three transmis-
sions, and one diffraction, adequately representing the experimental
scenarios [32]. Both transmitters and receivers were equipped with
omnidirectional antennas operating at 2.4 GHz.

The computer used for our simulations is equipped with an i7-
14700KF CPU, NVIDIA GeForce RTX 4080 16 GBGPU, and 32 GB of
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(a) Apartment layout (ceiling not shown). (b) Measurement points (side view). (c) Measurement points (top view).

Figure 2: Apartment layout and measurement points. Fig. 2a depicts the apartment layout (ceiling not shown). Fig. 2b and
Fig. 2c illustrate the placement of measurement points, with (b) viewed from the side and (c) from a top-down perspective.

RAM. The simulation required approximately eight days to generate
the RSS measurements for all interior receivers from both interior
and exterior transmitters. It is important to note that this simulation
process is specific to our study solely for testing purposes; in a real-
world deployment of ZeroTouch such simulations are not needed.

5.2 MATLAB
After acquiring the RSS values, we utilise MATLAB to implement
the autoencoder and evaluate ZeroTouch. It enables straightforward
neural network implementation using the MATLAB Deep Learning
Toolbox.§ The same computer used for Wireless InSite simulations
was also used for autoencoder training.

Adding noise. The measurements obtained from Wireless In-
Site are static. When using the same model geometry, repeated
simulations yield identical outputs, as the software does not incor-
porate noise. To better reflect real-world conditions, we introduced
additive white Gaussian noise (AWGN) to simulate thermal noise,
generating multiple samples per RSS measurement. This further
improves realism, as real-world RSS measurements also fluctuate
over time. In neural networks, this noise-based data augmenta-
tion enhances training by increasing data diversity and improving
the model’s robustness to variations and noise. We applied white
noise with a signal-to-noise ratio (SNR) of 20 dB, a typical value for
Wi-Fi [8].

To ensure sufficient data for reliable training, we set the noise
augmentation factor to five, generating five additional noisy sam-
ples for each measurement. Each RSS-based vector (x vector) con-
tains measurements from one transmitter to all anchor nodes. With
noise augmentation, we effectively create five additional x vectors
for every transmitter. For autoencoder training, these additional
vectors introduce variability and enhance robustness. During evalu-
ation, they enable independent classification of each vector, yielding
separate classification results. We use a majority voting process to
determine the final classification for a specific transmitter. In this
process, if the majority of classification results indicate that the RSS
measurements originate from an adversary device, we classify the
original RSS measurements as coming from an outside transmitter.

§https://www.mathworks.com/products/deep-learning.html

Data normalisation. Data normalisation is a standard prepro-
cessing step before training neural networks. We compute the mean
(𝜇) and standard deviation (𝜎) of the RSS measurements from the
training set and use these values to normalise the data to zero mean
and unit variance. The same 𝜇 and 𝜎 are applied to the test set,
ensuring consistent data transformation.

Autoencoder training. As stated in Sect. 4.1, the autoencoder
is trained exclusively on RSS measurements obtained from anchor
nodes. After noise-based data augmentation and normalisation,
we train a simple autoencoder with a single hidden layer of size
15, using the log-sigmoid (logsig) transfer function for both the
encoder and decoder. Notably, while we testedmultiple autoencoder
architectures, a simple design proved effective, with more complex
models providing no significant improvement.

6 Evaluation of Simulation Results
In this section, we distinguish between two possible scenarios for
the placement of anchor nodes within the geofence area: one with-
out human involvement (Sect. 6.2) and the other incorporating a
light human-in-the-loop element (Sect. 6.3). We refer to the former
as the random node placement scenario and the latter as the smart
node placement scenario. Both scenarios were evaluated across all
three rooms within the geofence region, as defined in Sect. 5, and
the results were compared to assess the security implications of
each approach.

6.1 Threshold Determination
Before evaluating ZeroTouch’s performance, it is essential to de-
termine the reconstruction error threshold 𝛿 using only training
(a priori) data. Selecting this threshold is inherently challenging,
and various methods have been proposed in the literature [45].
In our case, we tested several statistical approaches based on the
reconstruction errors from the training data and their statistical
properties. These include thresholds calculated using the mean, me-
dian, maximum, z-score, and 95th percentile of the reconstruction
errors, as well as the Interquartile Range (IQR) method and fitting
Gaussian Mixture Models. Details on these methods are available in
our GitHub repository. Based on our evaluations, the IQR method
consistently demonstrated the best classification accuracy [46].

https://www.mathworks.com/products/deep-learning.html
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6.2 Scenario 1: Random placement of nodes
The performance of ZeroTouch depends on the positioning of an-
chor nodes within the secure geofence region. In the first scenario,
we assume a random placement of the nodes, with each room in the
geofence region containing 𝑛 randomly positioned anchor nodes.
This scenario represents the worst-case scenario, as we have no
control over the anchor nodes’ positions. We assume the anchor
nodes are already deployed for other purposes, and users are not
required to position them at specific locations manually. Hence, no
human involvement is needed in the placement process.

As detailed in the threat model (Sect. 3.2), an attacker located
outside the geofence area can increase their transmit power to raise
the RSS, attempting to falsely prove their presence within the se-
cure region. This strategy aims to offset the attenuation caused by
the outer walls and align the RSS with the range expected from a
genuine device. However, suppose the attacker increases the power
excessively or insufficiently. In that case, the RSS measurements
at the anchor nodes will fall outside the expected range, resulting
in a set of RSS measurements unfamiliar to the autoencoder. This
unfamiliarity leads to higher reconstruction errors, increasing the
likelihood of detection. Consequently, for each outside position,
the attacker is constrained to a narrow range of power increases —
neither too high nor too low — to try to evade detection. We tested
various power levels and found that, on average, a 7 dB increase
provides the greatest advantage to the attacker, aligning with find-
ings from the research community on signal attenuation through
different materials [6]. The behaviour of different power levels and
their impact on attack success will be analysed in more detail later.
It is important to note that the 7 dB power increase is specific to
the room and attacker configuration in our setup and should not be
considered a general rule. Different apartment layouts will likely
require varying optimal power increases, making it challenging for
the attacker to determine the ideal value in practice.

Let us examine how the performance of ZeroTouch changes with
respect to the number of randomly selected nodes. To obtain these
results, we evaluated the accuracy of our model ten separate times
for each specified number of nodes, recalculating the results in
each trial. We then calculated the average accuracy and standard
deviation across these ten evaluations. Table 1a presents the average
accuracy and standard deviations for various node counts. Table 1b
outlines the results for the smart node placement scenario, which
will be analysed in the following section.

To provide a comprehensive view, we distinguish between two
cases for each room. First, we report results for outside nodes lo-
cated within half a metre of the tested room — representing the
most advantageous positions for attackers due to their proximity.
Second, we present results considering all 102 attacker nodes. This
analysis is performed for each of the three rooms within the secure
geofence area defined in Sect. 5, along with an overall average accu-
racy across all rooms. Based on these results, we draw the following
key observations:

(1) Dependence on Anchor Node Quantity. Accuracy is influ-
enced by the number of anchor nodes. Increasing the number
of randomly placed anchor nodes generally improves accuracy,
offering two main advantages. First, during the initialisation
phase, having more anchor nodes provides the autoencoder

with more data, enabling it to better learn the indoor RSS model
of the room. Second, when a new device attempts to prove
its presence inside the room, having more receivers increases
the available data, making it easier to detect inconsistencies in
the RSS and achieve correct classification. However, beyond a
certain point, adding more nodes results in only marginal accu-
racy improvements. Once the room model has been sufficiently
learned and the room is adequately covered with receivers,
additional anchor nodes provide little to no extra benefit.

(2) Dependence on Room Type. Accuracy varies depending on
the room type. Room one, the largest and most complex (with
a non-rectangular shape and a wide variety of furniture types),
has a lower initial accuracy level and requires more anchor
nodes to reach the same accuracy as simpler rooms. In con-
trast, the smallest and simplest, room two, achieves the highest
accuracy with fewer anchor nodes, as to be expected.

(3) Proximity Node Accuracy. The accuracy of nodes positioned
close to the room is comparable to, or slightly lower than, the
overall accuracy. This observation supports the claim that the
most advantageous locations for an attacker are just outside
the rooms.

(4) Impact of Anchor Node Location. The positioning of anchor
nodes within a room significantly affects accuracy. The same
number of anchor nodes, when positioned differently, can result
in varying accuracy levels. This is expected, as not all receivers
provide the same amount of information.
The average accuracy comprises the true negative rate and the

true positive rate. The true negative rate (or true negatives) refers
to ZeroTouch’s ability to correctly classify genuine inside devices
as inside. Conversely, if ZeroTouch incorrectly classifies an outside
device as inside, this is referred to as a false negative rate (or false

(a) Overall accuracy of 82.4%. (b) Overall accuracy of 94.7%.

Figure 3: Locations of transceivers and transmitters tested
within roomone. Blue points ■ represent anchor nodes, black
points • indicate correct classifications, and red points ★

indicate misclassifications by ZeroTouch. Fig. 3a shows the
results with a true negative rate of 96.5% and a true positive
rate of 70.6%, while Fig. 3b represents the results with a true
negative rate of 97.6% and a true positive rate of 92.2%.
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Room 1 [%] Room 2 [%] Room 3 [%] Average [%]

𝑛 Proximity Full Proximity Full Proximity Full Proximity Full

10 78.81, 3.81 77.67, 5.08 83.51, 11.28 92.50, 5.14 84.09, 4.31 86.82, 4.37 82.14 85.66

15 80.77, 4.69 79.36, 4.96 95.26, 7.26 97.02, 3.91 84.82, 4.20 87.33, 4.19 86.95 87.90

20 84.93, 7.56 83.36, 8.72 97.19, 7.08 97.99, 3.89 86.00, 5.06 87.56, 4.51 89.37 89.64

25 86.97, 6.98 84.67, 7.47 96.84, 6.50 98.46, 3.18 85.45, 5.07 87.04, 4.38 89.75 90.06

30 86.83, 6.52 84.56, 8.19 97.01, 7.02 98.66, 3.31 87.18, 3.28 88.45, 2.62 90.34 90.56

35 91.54, 4.99 89.28, 6.35 97.89, 6.65 98.97, 3.25 89.09, 0.42 89.27, 0.66 92.84 92.51

40 92.81, 6.47 91.24, 7.42 100, 0 100, 0 89.18, 0.79 89.16, 0.86 93.99 93.46

(a) Average accuracy with random node placement.

Room 1 [%] Room 2 [%] Room 3 [%] Average [%]

𝑛 Proximity Full Proximity Full Proximity Full Proximity Full

10 82.18, 5.51 81.95, 6.73 92.11, 9.18 96.23, 4.48 86.27, 3.36 88.94, 3.07 86.85 89.04

15 88.38, 5.80 88.49, 6.51 97.72, 3.10 98.89, 1.39 88.27, 2.12 89.60, 2.03 91.46 92.33

20 91.41, 6.24 91.23, 6.88 99.47, 1.66 99.75, 0.79 89.18, 1.45 90.50, 1.12 93.35 93.83

25 94.22, 4.08 93.20, 5.41 N/A N/A 89.45, 0.98 90.49, 0.87 94.38 94.48

30 94.86, 4.48 93.28, 4.98 N/A N/A 89.27, 0.58 90.08, 0.67 94.53 94.37

35 96.69, 0.67 95.66, 1.11 N/A N/A N/A N/A 95.14 95.16

40 97.11, 0.84 96.22, 1.06 N/A N/A N/A N/A 95.28 95.35

(b) Average accuracy with smart node placement.

Table 1: Overall classification accuracy of ZeroTouch for varying numbers of anchor nodes under two placement strategies:
random node placement (Table 1a) and smart node placement (Table 1b). Each table shows the average accuracy and standard
deviation, covering two attacker cases: attacker nodes positioned in close proximity to each room (Proximity) and all attacker
positions around the rooms (Full).

negatives). Similarly, the true positive rate (or true positives) refers to
ZeroTouch’s ability to correctly classify outside devices as outside.
Finally, when ZeroTouch incorrectly classifies a genuine inside
device as outside, this is referred to as the false positive rate (or false
positives).

Determining the true positive and true negative rates requires
analysing which nodes were correctly and incorrectly classified, as
well as their respective locations relative to the geofence area. Given
that room one is the largest and most complex room, we use it as
an example to illustrate the classification results, as shown in Fig. 3.
Additional visualisations of the results can be found in Appx. B or in
our GitHub repository. The figure, generated in MATLAB, presents
two different anchor node configurations with the same number of
anchor nodes (20). In both configurations, ZeroTouch achieves high
accuracy in the true negative rate, whereas the true positive rate
exhibits greater variability. Our testing indicates that this pattern
generally holds consistently across all tested rooms, not just room
one. Furthermore, as noted previously, the positioning of anchor
nodes significantly impacts the overall accuracy. In Fig. 3b, both
the true positive and true negative rates are higher than in Fig. 3a
despite the same number of anchor nodes used in both scenarios.

Although RSS is inherently unpredictable, we can still analyse the
results to understand misclassifications. As shown in Fig. 3, certain
outside nodes are consistently misclassified. Notably, the yellow-
highlighted corner in Fig. 3b is persistently misclassified, proving
to be the most challenging area for room one. Across multiple
experiments, even with more anchor nodes, outside transmitters in
this corner are often classified as being inside room one. Referring
to the apartment layout in Fig. 2a, we see this corner contains a
wooden door, which attenuates signals less than walls. Additionally,
a wall north of the transmitters introduces reflections due to their
omnidirectional antennas. These reflections propagate into the
room, resembling the signal behaviour of an actual device near an
interior door. This makes it harder for ZeroTouch to distinguish
these outside transmitters from genuine in-room devices.

We can also observe this phenomenon in Fig. 4, which represents
a stem plot of residual errors per transmitter for a test set, along
with the threshold used for classification. The plot corresponds
to the classification shown in Fig. 3b. Two distinct regions can be
observed: the red-shaded region, which corresponds to the out-
side transmitters (102 in total), and the green-striped region, which
corresponds to the inside transmitters. By comparing the residual

errors to the threshold, we note that eight outside transmitters
produce residual errors below the threshold. These are incorrectly
classified as inside devices, resulting in false negatives (cf. the loca-
tions of these transmitters in Fig. 3b). Notably, the residual error
of the yellow corner is comparable to those of the inside transmit-
ters, explaining the difficulty ZeroTouch faces in classifying these
transmitters correctly. Conversely, for transmitters inside the room,
we observe that two produce residual errors above the threshold.
These are incorrectly classified as outside devices, resulting in false
positives. (cf. the locations of these transmitters in Fig. 3b). The
residual errors plot in Fig. 4 also underscores the importance of
selecting an appropriate threshold value. A higher threshold leads
to more false negatives, while a lower threshold increases false
positives, making it crucial to strike a balance between the two.

Per-Position Power Sweep. A 7 dB increase represents the most
advantageous average case for the attacker. To further explore the
attacker’s potential advantage, we extended our analysis by testing
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Figure 4: Stem plot illustrating the average errors of the test
set for each transmitter. The red-shaded region represents
transmitters located outside the room. The green-striped
region represents transmitters located inside the room. The
horizontal blue line represents the classification threshold.
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various power levels at each outside attacker position. Specifically,
we conducted a power sweep from 0 dB to 100 dB in 0.25 dB incre-
ments for each outside location to determine the power increase
that results in the lowest reconstruction error — i.e., the optimal
attack scenario for that position. As a result, each outside location is
assigned a specific, non-uniform power increase. It is important to
note that this analysis is theoretical and represents an optimal case
for the attacker. In practice, the attacker does not have access to
the reconstruction error values from the autoencoder and can only
observe whether their attack succeeds or fails. In a real-world sce-
nario, the attacker would need to iteratively test different transmit
power levels, adjusting to maximize their chances of success — but
without any guarantee of achieving it. For this analysis, we used
the same randomly selected anchor node locations as in Fig. 3b.

To understand the impact of the power sweep on accuracy, we
refer to Fig. 5, which compares the false positive and false nega-
tive rates between the 7 dB increase and the power sweep attack
strategy as a function of the threshold value. We observe that the
false positive rates remain identical for both cases. This is expected,
as the threshold is determined a priori from anchor node mea-
surements, and indoor genuine devices are unaffected by different
attacker strategies. However, when comparing the false negative
curves, we notice a leftward shift in the power sweep case. As
a result, for the same threshold value, false negatives are higher
compared to the 7 dB scenario. This also aligns with expectations,
as more outside transmitters can now deceive ZeroTouch and be
incorrectly classified as inside. From our testing, we observed an
approximately 10% drop in accuracy compared to the 7 dB case.
Since this analysis represents a theoretically optimal attack case, in
practice, the accuracy drop will be smaller. Nonetheless, these find-
ings highlight the effectiveness of aggregating RSS measurements
across multiple receivers to enhance security, as many outside loca-
tions remain where the attacker cannot succeed, regardless of the
chosen transmit power.

Figure 5: False positive and false negative rates as a function
of the threshold value for the 7 dB fixed power increase and
power sweep attack strategies.

(a) Overall accuracy of 95.2%. (b) Overall accuracy of 95.7%.

Figure 6: Fig. 6a shows the results with a true negative rate
of 100% and a true positive rate of 91.2%, while Fig. 6b repre-
sents the results with a true negative rate of 98.8% and a true
positive rate of 93.1%.

6.3 Scenario 2: Smart placement of nodes
We have observed that the placement of anchor nodes significantly
influences the quality of RSS measurements and their contribution
to classification accuracy, as not all locations are equally effective.
Identifying anchor node positions that provide themost informative
measurements can help enhance ZeroTouch’s accuracy. Our tests
found that anchor nodes positioned closer to the inner walls provide
more useful RSS data, leading to better classification performance.
We refer to this specific selection of inner-wall anchor nodes as a
smart placement of nodes. The smart node placement may require
a light human-in-the-loop element, with basic guidelines recom-
mending that anchor nodes be placed as close as possible to the
inner walls of a room. It is important to note that this may not
always be straightforward for certain fixed devices, such as smart
smoke detectors. However, in many cases, smart devices are already
positioned near walls (e.g., smart plugs, thermostats, light switches,
sensors), suggesting that the placement of anchor nodes is not en-
tirely random, as assumed in Scenario 1. Additionally, some devices,
such as smart speakers, can be easily relocated to more favourable
positions. Therefore, achieving or approximating a smart anchor
node configuration should be feasible in most real-world scenarios.
The results for various anchor node counts, where nodes are se-
lected randomly but exclusively from the set of inner-wall anchor
nodes specific to a given room, are summarised in Table 1b. The
table presents the classification accuracy when the attacker applies
a uniform power increase of 7 dB. The cells marked as N/A indi-
cate scenarios where there are insufficient inner-wall anchor nodes
available in the room to meet the required node count. Compared
to the results in Table 1a, we observe that smart placement achieves
higher accuracy for the same number of anchor nodes. For instance,
twenty randomly selected anchor nodes from the smart placement
set yield, on average, higher accuracy (93.83%) than twenty com-
pletely random anchor nodes (89.64%). This also demonstrates that
smart placement requires fewer nodes to achieve similar accuracy
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levels. In Fig. 6, we visualise the results for room one, chosen again
as the largest and most complex room. The figure presents two
different anchor node configurations, each using the same number
of anchor nodes as before (20) and using the smart placement strat-
egy. In Fig. 6a, the twenty anchor nodes were randomly selected
from the inner-wall set, while in Fig. 6b, every second anchor node
from the inner-wall set was selected. The results show that both
selection strategies yield comparable accuracy. Additionally, both
approaches achieve better accuracy compared to the scenario where
anchor nodes are selected completely at random.

7 Discussion
In this section, we evaluate the strengths and limitations of
ZeroTouch, highlighting its scalability, flexibility, and practical ap-
plicability in real-world scenarios. We demonstrate how ZeroTouch
serves as a robust, plug-and-play solution that minimises the
human-in-the-loop element while addressing critical challenges
in secure geofencing and IoT device commissioning.

Scalability. Scalability is one of the key advantages of
ZeroTouch. By scalability, we mainly mean that the execution time
increases linearly with the number of devices being verified. This
is because each device verification is inherently an independent
event. Additionally, the verification process is highly efficient, re-
quiring only the collection of RSS measurements and running the
pre-trained autoencoder. As a result, ZeroTouch allows users to
verify large numbers of devices with ease.

Flexibility. Depending on their needs, users have the flexibil-
ity to implement ZeroTouch in different ways. If they prefer a
fully automated system without any human-in-the-loop element,
ZeroTouch can be deployed using existing devices already present
in the room. This corresponds in worst case to Scenario 1, as de-
scribed in Sect 6.2. Alternatively, if users value the improved ac-
curacy of Scenario 2, they may opt for a light human-in-the-loop
approach, where anchor nodes are positioned more strategically,
as outlined in Sect. 6.3. This flexibility allows users to adapt the
system to their priorities and requirements.

Since classification results depend on the chosen threshold, users
can tailor the system to prioritise either security or usability. Ad-
justing the threshold affects the balance between the true positive
rate (associated with security) and the true negative rate (associ-
ated with usability). Our method aims to strike a balanced trade-off
between these two objectives. In this work, we have presented
results that reflect such a balanced configuration. However, the
threshold can be adapted to meet specific operational goals. For
instance, increasing it to favour usability (resulting in a higher true
negative rate and a lower true positive rate), or decreasing it to
favour security (yielding a higher true positive rate and lower true
negatives). This flexibility allows for custom thresholding strategies
aligned with specific priorities.

Use cases. The potential applications of ZeroTouch span various
IoT deployment scenarios, particularly those where secure geofenc-
ing is essential but traditionally difficult to achieve autonomously.
Conventional device commissioning often involves manual configu-
ration, such as scanningQR codes [9], gesture-based pairing [20, 22],
or manually assigning devices to zones [12], all of which are in-
efficient and prone to human error. ZeroTouch addresses these
challenges by providing an autonomous and frictionless security

enhancement to existing authentication methods. Instead of replac-
ing existing authentication procedures, ZeroTouch complements
them by passively verifying that devices claiming to be within a se-
cure area genuinely are.When a device attempts to join the network,
ZeroTouch automatically analyses the RSS signatures frommultiple
anchor points, ensuring accurate, zero-interaction location verifica-
tion. If the device is confirmed within the designated boundary, it is
seamlessly registered. Otherwise, the device is flagged as potentially
malicious, and network access is denied. This automated process
significantly reduces human involvement, enhancing usability and
overall security without additional deployment complexity.

Beyond commissioning, ZeroTouch has direct implications for ac-
cess control in high-security environments and healthcare systems,
where enforcing strict physical boundaries is critical to operational
safety [7]. ZeroTouch can be used as an additional security layer to
verify that only authorised IoT devices physically present within
the premises are granted network access. For example, any de-
vice attempting to connect from outside the building or restricted
zone would be immediately identified as unauthorised, ensuring
that adversarial attempts to spoof locations or gain remote access
are denied. Similarly, in healthcare settings, ZeroTouch can en-
hance operational security by ensuring that medical devices remain
within their assigned rooms [1]. For instance, critical devices such
as infusion pumps or patient monitors must operate only within
designated hospital rooms and medical devices are automatically
commissioned and assigned to their respective rooms. ZeroTouch is
also a promising solution for IoT home automation systems, where
it can enforce room-specific rules by ensuring that devices such as
voice assistants, smart speakers, or cameras operate only within
designated areas.

8 Conclusion
In this paper, we presented ZeroTouch, a system for secure geofenc-
ing leveraging Received Signal Strength (RSS) measurements and
machine learning. ZeroTouch addresses key challenges in IoT de-
vice localisation by providing an automated, practical mechanism
to verify device locations within defined boundaries. By aggre-
gating inherently available RSS data from multiple receivers, our
approach effectively detects anomalies in location claims, thus of-
fering a layered security enhancement to existing authentication
methods. Our work demonstrates that RSS remains relevant in
practical security applications, despite its intrinsic theoretical limi-
tations. Since RSS measurements are natively supported by most
IoT devices, ZeroTouch provides an essentially cost-free security
upgrade without additional hardware or manual calibration.

We validated ZeroTouch in a realistic simulation environment,
demonstrating its ability to achieve over 90% accuracy under opti-
mal conditions. This highlights its potential for real-world applica-
tions, including secure IoT device commissioning, access control,
and smart home automation.
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Figure 7: Accuracy and loss during the learning process of
the supervised learning baseline.

A Supervised Learning Baseline
In our case, the supervised learning baseline is implemented as a
simple multilayer perceptron (MLP) neural network. Similar to the
autoencoder, it takes x, an RSS-based vector representing the RSS
values recorded by 𝑁 anchor nodes as input. The network consists
of a single fully connected hidden layer with a size of 15 neurons
(matching the size of the autoencoder’s hidden layer) and uses a
Rectified Linear Unit (ReLU) activation function. The output layer is
a softmax layer with two neurons corresponding to the two classes:
‘outside’ and ‘inside.’ The Adam optimiser is used for training, with
an initial learning rate of 0.001. The validation frequency is set to 50,
and the mini-batch size is set to 32. Further details of the network
are available on our GitHub repository.

Since this is a supervised learning approach, the RSS-based vec-
tors (x) are labelled to indicate whether they originate from an in-
side or outside transmitter. As with the autoencoder, noise is added
to the measurements for augmentation, the data is normalised, and
majority voting is used to determine the final classification. The
goal here is to evaluate the network’s accuracy in an ideal environ-
ment by training it on all transmitter locations (using the full set of
x vectors) and then evaluating its performance on the same data.
Although this approach is not typical in practice (using the same
set for training and evaluation), it allows us to assess whether the
neural network has sufficient capacity to fit the training data. Addi-
tionally, it provides insight into the theoretical maximum accuracy
achievable with the given set of anchor nodes.

While the network is expected to overfit the data, the small size
of the hidden layer (15 neurons) makes overfitting more challeng-
ing. The training process generally takes longer compared to the
autoencoder, ranging from 1 to 5 minutes. An example of the train-
ing procedure where twenty anchor nodes are used is shown in
Fig. 7, where the convergence of the accuracy and loss curves can
be observed. In this example, a very good accuracy of over 95% is
achieved.

We compare the results of the autoencoder and the supervised
learning approach in scenarios where both networks use the same
anchor nodes for classification. From our testing, we observe that
the autoencoder performs worse than supervised learning, as ex-
pected. For smaller numbers of anchor nodes (up to 20), the perfor-
mance gap is relatively small — within 10%. This indicates that the
autoencoder achieves results that are quite close to the theoretical
maximum achievable with that set of anchor nodes. However, with
a greater number of anchor nodes, the difference in performance
becomes more pronounced. The supervised learning baseline con-
sistently achieves very high accuracy, almost always exceeding
95%, while the autoencoder exhibits more variability in its results.
For instance, in certain cases with less optimal (‘bad’) anchor node
placements, the autoencoder achieves accuracies as low as 80%. This
demonstrates that supervised learning is better able to leverage a
larger number of receivers to improve classification performance.

B Supplementary Figures
This appendix provides additional visualisations of the results (see
Fig. 3), including further tested transceivers and transmitters, par-
ticularly for rooms two and three in the apartment.

(a) Overall accuracy of 98.5%. (b) Overall accuracy of 100%.

(c) Overall accuracy of 90.6%. (d) Overall accuracy of 91.2%.

Figure 8: Fig. 8a shows the results with a true negative rate
of 100% and a true positive rate of 98%, while Fig. 8b rep-
resents the results with a true negative rate of 100% and a
true positive rate of 100%. Fig. 8c shows the results with a
true negative rate of 98.3% and a true positive rate of 86.3%,
while Fig. 8d represents the results with a true negative rate
of 96.6% and a true positive rate of 88.2%.
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