
T-HIBE: A Novel Key Establishment Solution for
Decentralized, Multi-Tenant IoT Systems

Sayon Duttagupta, Dave Singelée, Bart Preneel
KU Leuven - imec - COSIC, Belgium

Email: firstname.lastname@esat.kuleuven.be

Abstract—The Internet of Things (IoT) devices has evolved
considerably in the past few years and is expected to grow
exponentially in the next decade. This exponential growth makes
key management in an IoT ecosystem very challenging. Tradi-
tional IoT systems are often centralized and grouped into an
ecosystem. However, this type of centralized architecture is not
always compatible with practical IoT deployments. This paper
proposes T-HIBE, a secure key establishment and agreement
solution for a decentralized multi-tenant IoT system with multiple
security domains. T-HIBE relies on principles of identity-based
cryptography for key transport between intra and inter-domain
devices while avoiding the inherent key-escrow problem. Fur-
thermore, we have demonstrated our proposed architecture on an
ARM Cortex-M4 microcontroller and evaluated the performance
to show that T-HIBE does not have a significant energy and
performance cost.

I. INTRODUCTION

There is an abundance of Internet-of-Things (IoT) devices
today, and the number of devices is rising exponentially. It
is now being used in various domains, from smart homes,
healthcare and environmental sensors to large scale industries
and supply-chain management. There is a growing need to
establish secure connections between these devices to ex-
change data while preserving confidentiality and integrity.
Key management becomes a challenge in these domains, with
the ever-increasing number of devices. Traditionally, securing
devices under the same security domain is typically done via
symmetric-key encryption. Each IoT device will have a pre-
shared key installed during fabrication and can use this to
communicate with a trusted third party (TTP), which acts as a
key distribution server in the network. When two IoT devices
in the network want to establish a session key, they rely on
the TTP to generate and securely transport a fresh session key
to both IoT devices. However, much trust is involved in the
TTP, as it is the central point of failure in the system. Suppose
one wants to extend this concept to a multi-security domain
setting, where two IoT devices from different security domains
want to establish a secure connection. First, the TTPs of the
security domains involved would need to agree on a session
key. Next, each TTP then securely transports the session key
to the IoT device within its security domain. The disadvantage
of this approach is that both TTPs learn the session key, so the
IoT device in the first security domain would also have to trust
the TTP in the second security domain. Moreover, each time
a session key needs to be established, an online connection
to the TTP involved is required. These solutions put a lot

of trust in these centralized hubs and act as a single point
of failure. Moreover, this solution does not scale very well
with an increasing number of IoT devices. Key management
becomes exponentially large, and more throughput is exerted
on the central hub. An alternative solution that is quite popular
is to use SSL/TLS for all the communications and connect it
to the main router or switch. This increases the load on such
networks and does not scale very well, especially in large
IoT ecosystems such as industrial ones. Furthermore, with
the increasing number of devices, certificate management also
becomes increasingly difficult.

An important trend is an evolution towards decentralized
IoT ecosystems, where IoT devices from multiple security
domains can interact and exchange data. A decentralized
IoT system provides a more feasible solution for scalabil-
ity and interoperability, and single-point-of-failure problems.
Moreover, one can expect that soon, more IoT devices in
such decentralized ecosystems will have the ability to initiate
transactions among themselves. This will significantly reduce
the execution time and communication costs, as they can
communicate among themselves and not rely on a central
TTP. Despite the advantages of symmetric-key cryptography
– being computationally inexpensive compared to their asym-
metric counterparts and having a smaller key length, it is
clear that one needs public-key cryptography to realize key
establishment in a decentralized IoT ecosystem. Generally, this
can be done using digital certificates and a robust public-key
infrastructure (PKI). Usually, this involves a central authority,
known as the Certificate Authority (CA), that issues digital
certificates of a device’s public-key. However, deploying a
large-scale PKI for a decentralized IoT system with multiple
security domains is challenging. This would require the CA
to issue certificates to each IoT device, which is not realistic.
Moreover, a disadvantage of deploying a PKI for IoT is that
revocation can become challenging. Before any key between
two IoT devices can be established, these devices would need
to check that the other party’s certificate is still valid. This
requires either a connection to an online service or the regular
distribution of Certificate Revocation Lists. Both approaches
are rather impractical for a decentralized IoT setting. There-
fore, in our work, we present an alternative approach based
on Identity-Based Encryption (IBE). More specifically, we
propose T-HIBE, a novel key establishment scheme for multi-
tenant IoT security systems. This decentralized methodology
of key establishment in IoT devices facilitates multi-domain

1

key exchanges. Although our solution can be realized in any
IoT system where a decentralized and heterogeneous solution
is needed, in the rest of the paper, we put forward the example
where each security domain is managed by a user (tenant). We
envision our work in a smart apartment setting, with multiple
tenants as entities or users, and each of them having multiple
IoT devices which can interact with each other. These devices
should be able to establish secure connections with IoT devices
from other domains.

II. CRYPTOGRAPHIC BACKGROUND

Before introducing our novel security solution, we will
first discuss some preliminaries on which our cryptographic
schemes are built.

A. Bi-linear pairings

Pairings are an additional structure-property demonstrated
by some curves that give way to a branch of public-key
cryptography known as Pairing-based Cryptography (PBC). A
pairing ê abstractly operates on two groups - a source group
G and a target group GT . Normally the source group will be
points on an elliptic curve, and the target group be elements
in a finite field. A pairing takes two points in the source
group and maps them to the target group so that the exponents
multiply. Hence we say the pairings is bilinear, and by bilinear,
we mean the multiplication of exponents. Formally, a bilinear
pairing is a map, which can be defined as follows:

Let n be a large prime number. Let G1 and GT be two cyclic
groups of prime order n, where G1 is represented additively
with identity ∞ and GT is represented multiplicatively with
identity 1. The map ê is represented as,

ê : G1 ×G1 → GT

that will have the following conditions:

1) Bilinear: ê(P a, Qb) = ê(P b, Qa) = ê(P,Q)ab, ∀a,b∈
Z, P,Q∈G1

2) Computable: There is an efficient algorithm to compute
ê in polynomial-time.

3) Non-Degenerate: ê(P, P) 6= 1, for some P ∈G1

There are some consequences of pairings in the standard
assumption models. The Decision Diffie-Hellman (DDH)
problem in G1 is easy [14], that is, if for a given input g,
gx, gy , gz ∈ G1 to test whether z = xy is as simple as
computing ê(g, gz) = ê(gx, gy). Hence it is not possible to
do standard Diffie-Hellman protocol in pairing groups. Also,
it is possible to efficiently reduce a discrete-log problem in G1

to a discrete-log problem in the target group GT [17]. Hence
it is imperative that the discrete-log in the target group GT

is hard, or else the discrete-log in the source group G1 will
not be hard. The security of the bilinear property depends
on the Discrete-Log Problem (DLP) to be hard, and the
Computational Diffie-Hellman (CDH) problem to be hard as
well. The Bilinear Diffie-Hellman (BDH) problem is defined
as, for a randomly chosen P ∈ G1, as well as aP , bP and
cP , for some randomly chosen a,b,c∈Z, it is computationally

hard to compute ê(P, P)abc. Also, for the BDH problem to be
hard, G1 and GT must be chosen in a way so that no known
algorithm can efficiently solve the Diffie-Hellman problem in
either G1 or GT .

B. IBE

In contrast to traditional PKI models where one needs to
have their public keys authenticated by a CA, in identity-
based cryptography, or Identity-Based Encryption (IBE), the
public key is essentially the public identity itself and does not
need any further authentication. The idea of identity-based
cryptography and its signature schemes was first envisioned
by Shamir [20] in 1984, but it was formally realized indepen-
dently by Boneh and Franklin [4] and Cocks [8] in 2001. The
Boneh and Franklin model is based on the Bilinear Diffie-
Hellman problem, whereas the Cocks scheme is based on
the quadratic residuosity problem. The primary motivation for
identity-based encryption was to help the deployment of a
public key infrastructure [4].

The private-key generator (PKG) is the central trusted entity
in the IBE scheme responsible for functioning the entire
protocol. It acts as the key generator center, and runs the setup
phase and key extraction phase, and then sends the private keys
of the respective devices to themselves via a secure channel,
as shown in Figure 1. A device’s private key is derived from
the master secret-key of the PKG and the device’s ID itself,
which is also the public-key. Therefore, as only the PKG
knows the master secret-key, it can only derive the subsequent
private-keys of the devices. Then the devices can communicate
securely with each other, using the parameters received from
the PKG and the devices’ identities. For the setup phase in the
Boneh-Franklin IBE scheme, the PKG will randomly generate
a generator P0∈ G1 and a private-key x∈Z, and computes the
public key as xP0. During the key extraction phase, a device
with identity ID will request the PKG to generate its private-
key, and the PKG would do so by computing xH(ID), where
H is a cryptographic hash function. To encrypt a message

PKG

Smart bulb 1 printer

Master secret:

Master public-key:

Bulb's private-key: Printer's private-key:

Fig. 1: Identity-based Encryption on an IoT system.

2

M, only the identity ID and the master public-key xP0 is
required. The device can then decrypt it using its private-key.

C. HIBE

In a traditional IBE scheme, a single PKG generates the
private keys for all the devices and transmits them via a
secure channel. Subsequently, significant research effort has
been devoted to realizing IBE and HIBE schemes. HIBE,
or hierarchical IBE, is, in essence, a multi-layer IBE, where
the private-key generation can be delegated to other devices
in the hierarchical order. A HIBE will have multiple PKGs
for the multiple levels, as depicted in 2. A layer-1 HIBE is
identical to a normal IBE. It can be scaled further by making
the root devices under the root PKG as the new PKGs for its
subsequent devices and thus creates a hierarchical structure.
HIBE is more scalable than a traditional IBE scheme, and
it divides the task of private-key generation from one PKG
to multiple PKGs, thus easing the burden on the root PKG.
An advantage HIBE has over IBE schemes is that leakage of
any domain level private key of the domain-specific PKG will
not compromise the secrets of the higher level PKGs. The
identities of the devices will be with respect to their PKGs
and their hierarchical depth. More specifically, identities here
are tuples; hence a device IDd at level-3 will have an identity
"IDroot||IDdomain||IDd".

PKG

Fig. 2: Hierarchical IBE.

Horwitz and Lynn [13] first introduced the concept of
HIBE with a formal definition of a 2-level HIBE model. The
main goal was to reduce the throughput and workload of the
PKG by delegating its work to other devices. There have
been further constructions of hierarchical IBE since then. The
Gentry and Silverberg construction [12] is IND-IDCPA secure
in the RO model, under the BDH assumption. The Boyen-
Waters scheme [5] is both anonymous and selectively secure
without random oracles. However, in all of these constructions,
the ciphertext grows linearly with hierarchical depth. Hence
deeper the hierarchy, the bigger is the ciphertext. Also, security
degrades exponentially in the hierarchy depth. Depth 2, 3 or 4

is considered fine, but more than that has a significant impact
on security. The Boneh-Boyen-Goh construction [3] is a selec-
tively secure construction where the ciphertext is independent
of the hierarchy depth. However, the public parameter in this
scheme is dependent on the depth of the hierarchy; hence, one
has to commit to the depth of the hierarchy ahead of time,
unlike the previous ones, which can be scalable further on the
fly. HIBE, like IBE, suffers from key-escrow. Moreover, in
HIBE especially, the PKG at level h can read all information
of level h+1, h+2, ...n. Hence, the root PKG can read every
encrypted data of every level.

III. ATTACKER MODEL AND ASSUMPTIONS

In an IoT environment with a private-key generator (PKG),
we inherently assume that the PKG is honest, but curious.
As in an IBE setting, the PKG is responsible for generating
and distributing keys, it can also decrypt any communication
between devices that has received a key-pair from the PKG.
Furthermore, in a hierarchical setting, the PKG(s) at a higher
level can read the information being exchanged at their lower
levels. We assume that in the initial setup phase, only the
key-pair distribution is done via a secure channel. This secure
channel is only required for this phase. Once it is complete,
any two devices in the scheme can agree on a key. All the
public-keys, names and IDs of the devices are publicly known
and available. The attacker is assumed to have access to the
insecure wireless channel during the execution of the protocol
and can intercept, inject or modify messages at will and try
to break the confidentiality and read the messages.

IV. OUR SOLUTION: THRESHOLD-BASED HIERARCHICAL
IDENTITY-BASED ENCRYPTION (T-HIBE)

The discussion in the section above shows that using IBE in
an IoT setting has multiple benefits. Compared to a standard
PKI model, IBE offers less storage and memory overhead with
a slight compromise on the execution time. There is no need
to hold and store certificates and do an online lookup. The
HIBE scheme discussed in Sect. II-C naturally fits the multi-
security domain setting we envision in this paper. Two IoT
devices could use it as a cryptographic primitive to establish a
joint session-key, as long as the security domains of both IoT
devices have a common ancestor in the hierarchical domain
system.

However, a common problem with both IBE and HIBE
is key-escrow. As the (root) private-key generator (PKG) is
responsible for generating the private keys, it can, in theory,
decrypt all the messages for all the devices. Although the PKG
is assumed to be a trusted entity, this might be an unfavourable
situation in some IoT use cases. Hence, we propose T-HIBE:
A threshold-based hierarchical identity-based encryption.

A. Main concept

The basic idea of T-HIBE is to divide the functionality of the
root private-key generator over multiple, non-colluding root
PKGs. These different root PKGs only need to agree on public
parameters, including a public key. Each of the root PKGs
will generate its own local private master key. When a node

3

on the layer below needs to receive its private key, each of the
root PKGs will compute a share of the private key by using
their local master key. The node can then use Shamir’s secret-
sharing [19] on the different shares to compute its private-key1.

When having computed its private key, each node on the
layer below the root layer can, in turn, be the new PKG in
his trusted security domain and generate and distribute keys
to the IoT devices on the layer below, as shown in Figure 3.
If all the root PKGs do not collude with each other, then no
messages can be decrypted, as none of the root PKGs in the
system know the actual master key (i.e. the master key that
hypothetically would be the result of combining all the master
keys of the different root PKGs). The domain PKG (i.e. the
user in Figure 3) can, however, still do this, but as this is
intra-domain, this is considered inside a trusted ecosystem or
a trusted domain. For example, in a multi-tenant system, the
different users can be the different tenants, and they, in turn,
distribute the keys to their own local IoT devices.

B. Protocol structure

For our scheme, we are using Gentry-Silverberg construc-
tion of HIBE [12], which is known to be one-of-the only fully
functioning HIBE up to date [9]. We use Pedersen’s distributed
key generation algorithm [18] in a verifiable (t, n) secret-
sharing scheme to divide the shares of different root PKGs,
such that there is no “honest-dealer” to distribute the shares,
but each root PKG can compute and verify on their own.

To formally realize this, we have divided our scheme into
multiple sections. PKG initialization is where all the different
PKGs are initialized and setup, and the threshold secret-keys
are generated and computes the master secret-key and agrees
on a master public-key. For our implementation (Sect. VII),
we have envisioned three honest-but-curious PKGs, but it can
be practically deployed to any n numbers of PKGs, which
requires at least a set of t keys to compute the final secret

1Note that this result would be equal to the hypothetical case where the
different root PKGs would first combine their master-keys, using Shamir’s
secret-sharing, to compute a joint root master-key. And then compute the
private-key of the node using this joint root master-key. Since the root PKGs
are assumed not to collude, this hypothetical case will never happen, and none
of the parties in the system will know the joint root master-key.

PKG2 PKG3PKG1

User1 User2 User3

Fig. 3: T-HIBE on an IoT system.

1. PKG Initialization 2. User Initialization 3. IoT Initialization

Occurs once Occurs a few times Occurs multiple times

Fig. 4: Initialization phases of T-HIBE.

(Sect. VI-A). If required, the protocol also has the option
to add more PKGs into the ecosystem after the system goes
online. The PKG initialization phase needs to occur only once
per protocol execution, and every time a new PKG needs to be
set up. Ideally, these PKGs can be operated on the cloud and
can be co-located at different places, but if need be, they can
even be realized on a microcontroller (Sect. VII). This phase
is followed by User initialization, where t minimum number
of PKGs send their individual shares of the user’s private-
key, and the user extracts and computes the final private-key
locally on their device. The users obtain their shares of their
private-keys via secure external channels, such as TLS, and
then combine these shares locally on their device via threshold
cryptography to yield the final secret. These user devices, in
turn, becomes the new PKG for their sub-domain. This phase
can be re-run a few times to periodically refresh the sub-
keys to avoid key leakages and maintain the security level.
However, frequent execution of this level would lead to a
less efficient protocol as all the devices under the user also
need to re-run the protocol again to get their newly generated
keys. Finally, IoT device initialization deals with IoT devices
initializing in their domains and agreeing on a session-key.
A new IoT device will obtain their private-key from their
domain user via some secure channel. After all devices and
phases have been initialized, key-establishment occurs, which
will then create a symmetric session-key, and transport this
session-key as an encrypted message via T-HIBE to any other
device in the ecosystem and will use this specific session-key
to encrypt data and communicate between IoT devices until
revoked or timed out. This level can be executed multiple times
to avoid the keys from long-term leakage. Theoretically, our T-
HIBE scheme can be extended to multiple hierarchical levels
also, but to avoid any loss in efficiency and security, as the
ciphertext length grows linearly with more levels, we believe
this structure of using three levels is apt.

V. PROTOCOL CONSTRUCTION

A. PKG initialization - key generation

As defined by Gentry-Silverberg [12], this can be formally
defined by the following steps:

1) Let us assume there are n PKGs: P1, P2, P3, ..., Pn.
2) Only t out of the n PKGs are required to compute the

secret.

4

3) Let any one of the PKG, Pi, run the BDH parameter
generator [4] IG to output two groups G1 and G2 of
the same prime order q and the description of a suitable
pairing ê : G1 ×G1 → G2.

4) Selects cryptographic hash functions H1 : {0, 1}∗ ∈ G1

and H2 : G2 ∈ {0, 1}n for some n.
5) Selects a random generator P ∈ G1; Pi then broadcasts

these public values to all the other PKGs.
6) Each PKG Pi then randomly selects a secret si ∈ Zq

and computes Q′′i = siP and ai0 = si.
7) Each PKG Pi selects a random polynomial fi(x) ∈ Zq

of degree t− 1 of the form:

fi(x) = ai0 + ai1x+ ai2x
2 + ...+ ai(t−1)x

t−1 (1)

where fi(0) = ai0 = si

8) Every PKG Pi will compute and send Aik = aikP for
k ∈ [0, t− 1] to all other PKGs, and Ai0 = siP = Q′′i .

9) Every PKG Pi will compute the share sij = fi(j) mod
q and send it to PKG Pj via a secure channel, for all
i, j ∈ [1, t]

10) Each PKG Pi can now verify the all the t − 1 shares
received from the other PKGs by computing

sijP =

t∑
k=0

jkAik (2)

for all i, j ∈ [1, t]

11) After all the PKGs have received their share of sij , they
can compute their respective shares. F (i) is the share of
PKG Pi, and is denoted as:

F (i) = f1(i)+f2(i)+f3(i)+ ...+ft(i) =
∑

sij (3)

for i, j ∈ [1, t], where F (i) is the share of PKG Pi,
and F (0) is the master-secret key.

12) To compute the master-secret s, theoretically, one could
compute the Lagrange’s Interpolation on the polynomial,
namely,

s =

t∑
i=0

Li(0)F (i) (4)

Where,

Li(x) =

t∏
j=1

x− j

t∏
j=1
j 6=i

i− j
(5)

13) The public point Q can be computed as,

Q =

t∑
i=0

Li(0)Q
′
i

Where,

Q′i = F (i)P

14) Message space isM = {0, 1}m and the ciphertext space
is C = Gh

1 × {0, 1}n, h being the hierarchical level of
the recipient.

15) Public parameters are defined as
PK = (G1,G2, ê, P,Q,H1, H2)

B. PKG initialization - key extraction

1) In HIBE, the identity of a user is defined by the tuple of
identities till the root PKG, where the root PKG is the
collection of all the threshold PKGs. Hence, the User
1 as shown on Fig 3 will have its identity as IDu1 =
(IDroot||IDu1).

2) Every PKG Pi will independently compute the share
γi = F (i)H(IDu1) and send it to the user’s device,
over a secure channel, to compute the user’s secret key
sH(IDu1) locally, in the following manner:

sH(IDu1) =

t∑
i=0

Li(0)γi

Where,

Li(x) =

t∏
j=1

x− j

t∏
j=1
j 6=i

i− j

3) None of the PKGs learn anything about the final secret
of the domain member (user), unless t or more of them
collude, which is highly unlikely and violates our initial
security assumption. Leakage of t − 1 shares will not
leak any information about the final secret.

C. Users’ and Devices initialization - key extraction

1) Identity is in the form of tuples, and User H + 1 at
level h+1 will have an ID-tuple of (ID1, ...,IDh,
IDh+1), where ID1 is the root-PKG layer.

2) Every user at level h ≥ 0 has a secret point Sh ∈ G1

and (h− 1) translation points Q1, ...Qh−1 ∈ G1.
3) To compute the secret-key for the device IDh+1 at level

h + 1, the parent IDh computes Ph+1 = H1(ID1,
...,IDh, IDh+1) ∈ G1 will pick a random secret
sh ∈ Zq and sets the child’s IDh+1 secret point as
Sh+1 = Sh + shPh+1, and the translation point as
Qh = shP , and send all these values, along with the
previous h−1 translation points to the child via a secure
channel. Hence, the child’s IDh+1 secret key is

Sh+1 =

h+1∑
i=1

si−1Pi, Q1 = s1P, ..., Qh = shP (6)

D. Message encryption

1) To encrypt a message M ∈ M, for device IDh at
level h with ID-tuple (ID1, ...,IDh), compute Pi =
H(ID1, ...,IDi)) ∈ G1∀1 ≤ i ≤ h and choose a
random r ∈ Zq .

5

2) The ciphertext is,

C = [rP, rP2, ..., rPh,M ⊕H2(g
r)] (7)

where g = ê(Q,P1) ∈ G2

3) To decrypt the ciphertext, let C = [U,U2, ..., Uh, V] ∈ C
be the ciphertext.

4) The message will be,

M = V ⊕H2(
ê(U, Sh)

h∏
i=2

ê(Qi−1, Ui)

) (8)

E. Session-key establishment

1) As the ciphertext length grows linearly with hierarchical
depth, and there might be a lot of message transmissions
in quick successions in an IoT environment, it is simpler
to establish a symmetric session-key and use this for the
actual encryption of data. T-HIBE can then be used to
securely transport the symmetric session key from one
IoT device to another.

2) We shall use a three-message pass between the two IoT
devices, Device A from user-domain 1 and Device B
from user-domain 2, to agree on a session-key and using
T-HIBE as the key-transport protocol, as shown in Fig 5.

3) The first IoT device (Device A) will generate a random
key (α) and a random nonce (r1) and encrypt this using
T-HIBE and sends it to Device B: ET-HIBEB(α || r1)

4) Device B will respond back to the initial request by
sending the received nonce (r1) along with a ran-
domly generated key (β) and another random nonce
(r2), encrypted using T-HIBE credentials of Device A:
ET-HIBEA(β || r1 || r2)

5) After the first successful exchange, Device A will send
back the nonce received in the last message (r2) back to
Device B in the clear, hence confirming mutual entity
authentication.

6) Both the device will now use the shared-secret key
H(α || β) to communicate between them and to secure
the actual data communication. By doing this, both
parties have key-control and mutual key-confirmation.

7) After the short session has concluded, the session-key
can be destroyed and re-established again in the future
if needed. In this way, we are using less computational
overhead than when all transmissions were encrypted
using only HIBE.

VI. PRACTICAL DISCUSSION

A. Realisation of the root PKGs

In our scheme, the PKG(s) are responsible for initializing
the setup and needs to run only once. Although we have eval-
uated the feasibility of running the PKGs on a microcontroller
in Sect VII, it can also be realized on multiple cloud service
providers. Our scheme does not require the PKG(s) to be
always online and only be recalled during re-sharing of the
master-key to a new PKG. One of the advantages a cloud

PKG has from a local one, apart from faster execution times,
is operating remotely and not being tied down to a specific
location. Ideally, the n root PKGs will be hosted on different
cloud service providers such as Amazon Web Services, Google
Cloud and Microsoft Azure. It will only correlate with t other
PKGs once to generate the parameters. Once this is done,
the domain users will contact any active t out of the total n
cloud PKGs to get their share of their private-key. The domain
user will then collect all the received shares required and will
locally compute the private-key. In turn, the users will become
the domain PKGs of their respective domains and compute
private-keys for the IoT devices present below. No interaction
between the IoT devices and the root PKGs are required, and
the system can be functional even if all the root PKGs goes
offline.

In T-HIBE, it is also possible to add more PKGs later on if
one or a few of the existing PKGs quits or change the number
of shares required to compute the secret. With proper re-
sharing, a (t, n) scheme can be converted to a (t′, n′) scheme
with the final secret being the same, as long as the final total
number of shares n′ does not become greater than the field’s
modulo prime q. To re-share the existing master-secret and
give the new PKG its shares, the other active PKGs needs to
perform the following actions.

1) The new PKG(s) Pz makes itself known to t, or greater
than t, other active PKGs.

2) Each PKG Pi, where 1 ≤ i ≤ t and i 6= z, that are
a part of the original (t, n) scheme selects a random
polynomial, similar to Equation (3), fi(y) ∈ Zq of
degree t′ − 1 of the form:

fi(y) = ai0 + ai1x+ ai2y
2 + ...+ ai(t′−1)y

t′−1 (9)

and set its old share si as ai0, that is, fi(0) = ai0 = si
3) Every PKG Pi will compute and send Aik = aikP for

k ∈ [0, t′ − 1] to all other PKGs.
4) For each PKG Pz in the new scheme, each PKG Pi will

compute the share siz = fi(z) mod q and send it to
PKG Pz via a secure channel, for all i, z ∈ [1, t′]

5) Each PKG Pz can now verify the all the t′ − 1 shares
received from the other PKGs by computing

sizP =

t′∑
k=0

zkAik (10)

for all i, z ∈ [1, t′]

6) If the verification succeeds, the new shares s′z are
generated by computing

s′z =

t′∑
i=0

sizLi(0) mod q (11)

Where Li(0) is defined as in Equation (5)
7) The originally computed final secret s still remains the

same, while the scheme transforms from (t, n) to (t′, n′).
8) The re-sharing protocol can be run as many number of

times as possible, as long as the total number of shares
n is less than the field’s prime modulo q, i.e., n ≤ q−1.

6

User 1 User 2 Device A Device B

Receive parameters
from the PKG(s)

Receive parameters
from the PKG(s)

Generates secret-key Generates secret-key

Private parameters to compute the device-key

Private parameters to compute the device-key

Generates α, r1

ET-HIBEB(α || r1)

Generates β, r2

ET-HIBEA(β || r1 || r2)

r2

Fig. 5: Key-transport using T-HIBE

B. Temporary identifiers

One of the reasons IBE is interesting to use in an IoT
setting is that it solves the need to verify the authenticity of a
public key. However, similarly to PKI, one needs to consider
revocation. IoT devices can get compromised, and one needs
to avoid setting up a secure connection with a compromised
device. This is not an easy problem to solve in IBE, as the
public key is equal to the identity of a device, and one cannot
revoke one’s identity. However, it is possible to use temporary
identities to overcome this problem. These temporary identities
are the identity of the device along with a time period. Instead
of the public-key being only the identity of the device, a short
time-span can be added as a temporal identifier in the form of
"ID || timestamp".

Once the time period has passed, this temporary identity has
expired by default. This solves the aforementioned problem,
as a temporary identifier (and hence the public key) can no
longer be used after the time period has expired. After this
period, the IoT device needs to obtain from the PKG on the
layer above a fresh private-key. This private-key corresponds to
the new public-key that will be used by the IoT device, which
equals the new temporary identifier for the new time period.
Unlike the PKI scheme, the other devices do not need to obtain
new certificates and verify their authenticity every time the
public-key changes. Hence the other devices do not need to
communicate with the PKG(s) and can verify the public-key
themselves.

The duration of this timestamp, that is, the validity of
the public-key, is essentially a trade-off between security and
efficiency. A long time period will require fewer key updates
hence improving efficiency. However, it will also have a larger

impact when a device gets compromised or the key gets
leaked, affecting security. Increasing the frequency of key
updates will increase the overall security. However, it also
means, depending on which layer the key has been updated, it
might need to re-run the entire protocol to generate new sets
of key pairs for the updated keys. If this is done on a higher
level, all the devices/users present below in the hierarchy also
need to update their keys as the original key changes. This
effectively decreases efficiency. Gradual key exposure is still
a problem in most crytosystems [6]. Periodically refreshing
the key or dividing the key into multiple sub-keys such that
leakage of a few sub-keys will not leak any information on the
original key are the only natural ways to tackle the problem.
We argue that as we have already implemented a threshold
structure at the root level, we have essentially solved the key-
leakage problem at that level, and we do not need to deploy
temporary identifiers at all layers/levels in the system and only
where it is necessary. Also, the time windows on the timestamp
should be different for different levels to balance efficiency and
security. Frequent key refreshes in the user domain level will,
in turn, mean the IoT devices also need to be refreshed with
the new user’s private-key. Hence, as the IoT devices are at
the lowest level of the hierarchy and the most susceptible to
leakage and compromise, devices on this layer should have
the shortest time window compared to the other levels. The
keys in the user level should also be periodically refreshed
by the root PKGs but at a far higher time interval. The time
windows and all the users’ devices and IoT devices are a part
of the public parameters, and this information is available to
all devices beforehand.

7

TABLE I: Performance evaluation

T-HIBE phases Execution time Clock cycles

Setup generation (1,1) 30 ms 5,390,105

Key extraction (1,1) 230 ms 41,381,743

Setup generation (3,3) 410 ms 73,781,909

Key extraction (3,3) 640 ms 115,212,481

1-level encryption 560 ms 100,792,511

1-level decryption 249 ms 44,889,043

2-level encryption 680 ms 122,414,327

2-level decryption 590 ms 106,229,541

AES-CBC encryption 0.021 ms 3774

AES-CBC decryption 0.036 ms 3480

C. Delegation and Future Messages

In T-HIBE, it is also possible to delegate the task to be the
manager device of the user for a limited period, for example,
either when the user goes for a vacation or decides to rent
his apartment for a brief while. The user can issue fresh keys
with a revocable timestamp for the delegated user. The new
delegated user can use these keys to establish new temporary
keys for the devices below. The original user can also revoke
the access at will.

Due to the inherent property of IBE, it is possible to send
a message to a device intended only to be read at a future
date [4]. As the public-key of a device is its identity and
a set date, the sender can encrypt a message with a future
date and send it. If that receiver device receives fresh keys
from its user for that new date, it can then decrypt it as it
will receive the corresponding decryption key for that specific
public-key. If it receives the message earlier, as it does not
have the future decryption key corresponding to that future
public-key, it cannot decrypt that ciphertext.

VII. IMPLEMENTATION

In this section, we evaluate the feasibility of running our
solution on IoT devices. We tested our setup on three ARM
Cortex-M4 microcontrollers. Although we included the key
setup and key extraction phase in our execution, these numbers
can be ignored if needed, as the root PKG(s) will run these
phases seldomly, and it can be assumed the root PKG to be a
powerful high-end device or hosted on a cloud platform. We
used the ARM Cortex-M4 processor on the DISCO-F469NI
discovery board and implemented our setup using ARM Mbed-
CLI v1.8.3 and GCC-ARM v6.3.1 as the compiler. Our
testing module was built on the RELIC-toolkit [2], a modern
cryptographic library for the embedded devices. We used the
pairing friendly BN-254 curve to achieve a 128-bit security
level. The microcontroller achieved a setup phase generation in
30 milliseconds and private key extraction in 230 milliseconds
per user for a single PKG. A threshold (3,3) scheme took
an average 410 milliseconds and 640 milliseconds for setup
generation and key extraction, respectively. The encryption and

decryption phases without hierarchy took 560 milliseconds
and 250 milliseconds, respectively, as shown in Table I. A
2-level hierarchical setup, as envisioned in our paper, takes
680 ms for encryption and 590 ms for decryption. After this
stage, the message will encapsulate a 128-bit symmetric key
jointly generated and agreed upon by both the devices and used
as a session-key between the devices. AES-128 encryption
and decryption times for a Cortex-M4 microcontroller are
around 21 microseconds and 36 microseconds, respectively.
As with increasing depth in the hierarchy, the ID-length will
increase, and so will the ciphertext length. Hence, increasing
the hierarchical depth will have some impact on the execution
time. Hence we demonstrate that, although with hierarchical
depth efficiency decreases, it is not substantial for a 3-
layered approach as stated in our work. Also, increasing the
number of devices or users per hierarchical level will have no
impact on performance. Although pairing-based cryptography
is a resource-intensive operation, we find our implementation
results modest, hence stating it can be run on an IoT device.

VIII. RELATED WORK

Due to the heterogeneous nature of the IoT ecosystem,
it is imperative for a key management solution to allow
for secure communication, with strong confidentiality and
integrity, between devices outside their trust domains. It should
be possible for the manager of the trust domain to easily revoke
keys or delegate access to other devices. There should not be
a centralized hub that is always assumed to be trusted and act
as a single point of failure, and the entire protocol should be
lightweight and scalable enough to be run on low-powered IoT
devices. Unfortunately, a lot of these requirements are missing
in the current state-of-the-art. Several PKI-based solutions
have been put forward. Gehrmann et al. [11] proposed an
idea to deploy a personal CA in each security domain that is
managed by a user. This personal CA could, for example,
be the smartphone of the user or another trusted personal
device. Within each domain, the personal CA can then issue
certificates to any IoT devices in the network. To realize a
multi-security domain scenario, one could rely on one root
CA that authenticates each of the personal CA’s underneath it.
This way, each IoT device has a certificate that it can use to
authenticate its permanent public key during a key establish-
ment protocol with another IoT device. However, revocation
is not always very intuitive, as the revocation lists need to
be distributed among all the devices and checked before
every key-establishment. Also, signing is a memory-intensive
operation, and the devices always need to look up a public-
key and verify its signature. [15] proposed an ECC-based
key-establishment solution that involves a centralized entity
known as the Registration Authority (RA), which is assumed
to be honest and trusted. Several ABE-based key-management
solutions have been proposed, including CP-ABE [10] and
KP-ABE [21]. However, in both the works, the authors did
not tackle to problem of key-escrow and assumed the root
PKG to be honest and trusted at all times. Also, previous
work has shown ABE being a cryptographically expensive

8

operation to execute, where encrypt and decrypt functions
take a few seconds to compute on an IoT device [22]. These
works are also not very scalable and do not work well with
an increasing number of devices. [1] proposed a decentralized
batch-based group key management protocol with full forward
secrecy and fully scalable. However, due to no authenticity
checks, this is susceptible to replay attacks, hence insecure.
Moreover, it is not possible to revoke any distributed key.
Previous works involving IBE in and IoT [7], [16] do not
solve the inherent key-escrow problem and put full trust in
the PKG. Additionally, these systems are neither scalable nor
allow delegation. Also, it is expensive to use IBE for all the
operations in a resource constraint device, such as IoT. Our
work tries to solve these problems by only using T-HIBE as
a key-transport mechanism, hence encrypting/decrypting only
once. In Table II, we provide a comparison with the stated
previous works.

TABLE II: Comparison with other relevant works

Protocol Secure Scalable Efficient Revokable
Solves key escrow

/centralization

Personal CA [11] l l m m l

ECC [15] l l l l m

CP-ABE [10] l l m l m

KP-ABE [21] l l m m m

Group-key [1] m l l m l

IBE [7], [16] l m l l m

This work [T-HIBE] l l l l l

IX. CONCLUSION

One of the security challenges in decentralized IoT ecosys-
tems is the establishment of secure connections between IoT
devices from multiple security domains. To tackle this prob-
lem, we proposed T-HIBE, a Threshold-based Hierarchical
Identity-Based Encryption scheme for IoT. T-HIBE allows
efficient key management in a multi-security domain setting.
We tackled the key-escrow problem of HIBE by using multiple
root PKGs instead of one and hence provide additional trust
and transparency. We argue that having no certificate overhead
with almost similar performance makes T-HIBE a robust and
practical framework and an interesting alternative to conven-
tional PKI solutions. Our solution is also scalable and can be
realized on an embedded IoT device. We evaluated our scheme
on the popular ARM Cortex-M4 microcontroller and showed
that it is viable for IoT devices.

ACKNOWLEDGMENTS

This work was supported in part by CyberSecurity Research
Flanders with reference number VR20192203, by the Research
Council KU Leuven C1 on Security and Privacy for Cyber-
Physical Systems and the Internet of Things with contract

number C16/15/058, the FWO SBO project SPITE, and by
the European Union’s Horizon 2020 Research and innovation
program under grant agreement No. 826284 (ProTego).

REFERENCES

[1] Abdmeziem, M.R., Tandjaoui, D., Romdhani, I.: A decentralized batch-
based group key management protocol for mobile internet of things.
In: 2015 IEEE International Conference on Computer and Information
Technology. pp. 1109–1117 (2015)

[2] Aranha, D.F., Gouvêa, C.P.L., Markmann, T., Wahby, R.S., Liao, K.:
RELIC is an Efficient LIbrary for Cryptography. https://github.com/
relic-toolkit/relic

[3] Boneh, D., Boyen, X., Goh, E.J.: Hierarchical identity based encryp-
tion with constant size ciphertext. Cryptology ePrint Archive, Report
2005/015 (2005), https://eprint.iacr.org/2005/015

[4] Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing.
In: Kilian, J. (ed.) Advances in Cryptology — CRYPTO 2001. pp. 213–
229. Springer Berlin Heidelberg, Berlin, Heidelberg (2001)

[5] Boyen, X., Waters, B.: Anonymous hierarchical identity-based en-
cryption (without random oracles). Cryptology ePrint Archive, Report
2006/085 (2006), https://eprint.iacr.org/2006/085

[6] Canetti, R., Dodis, Y., Halevi, S., Kushilevitz, E., Sahai, A.: Exposure-
resilient functions and all-or-nothing transforms. In: Advances in Cryp-
tology - EUROCRYPT 2000. Lecture Notes in Computer Science,
vol. 1807, pp. 453–469. Springer (2000)

[7] Chen, W.: An ibe-based security scheme on internet of things. In:
2012 IEEE 2nd International Conference on Cloud Computing and
Intelligence Systems. vol. 03, pp. 1046–1049 (2012)

[8] Cocks, C.: An identity based encryption scheme based on quadratic
residues. In: Proceedings of the 8th IMA International Conference
on Cryptography and Coding. p. 360–363. Springer-Verlag, Berlin,
Heidelberg (2001)

[9] Dodis, Y., Yung, M.: Exposure-resilience for free: the hierarchical id-
based encryption case. In: First International IEEE Security in Storage
Workshop, 2002. Proceedings. pp. 45–52 (2002)

[10] Fischer, M., Scheerhorn, A., Tönjes, R.: Using attribute-based encryption
on iot devices with instant key revocation. In: 2019 IEEE International
Conference on Pervasive Computing and Communications Workshops
(PerCom Workshops). pp. 126–131 (2019)

[11] Gehrmann, C., Nyberg, K., Mitchell, C.J.: The personal ca - pki for
a personal area network. In: Mobile and Wireless Communications
Summit 2002. pp. 31–35. IST (2002)

[12] Gentry, C., Silverberg, A.: Hierarchical id-based cryptography. Cryptol-
ogy ePrint Archive, Report 2002/056 (2002)

[13] Horwitz, J., Lynn, B.: Toward hierarchical identity-based encryption. In:
Knudsen, L.R. (ed.) Advances in Cryptology — EUROCRYPT 2002. pp.
466–481. Springer Berlin Heidelberg, Berlin, Heidelberg (2002)

[14] Joux, A., Nguyen, K.: Separating decision diffie-hellman from diffie-
hellman in cryptographic groups. Cryptology ePrint Archive, Report
2001/003 (2001), https://eprint.iacr.org/2001/003

[15] Liu, J., Xiao, Y., Chen, C.P.: Authentication and access control in the
internet of things. In: 2012 32nd International Conference on Distributed
Computing Systems Workshops. pp. 588–592 (2012).

[16] Markmann, T., Schmidt, T.C., Wählisch, M.: Federated end-to-end
authentication for the constrained internet of things using ibc and ecc.
SIGCOMM Comput. Commun. Rev. 45(4), 603–604 (Aug 2015)

[17] Menezes, A.J., Okamoto, T., Vanstone, S.A.: Reducing elliptic curve
logarithms to logarithms in a finite field. IEEE Transactions on Infor-
mation Theory 39(5), 1639–1646 (1993)

[18] Pedersen, T.: A Threshold Cryptosystem without a Trusted Party. In:
Advances in Cryptology — EUROCRYPT ’91. pp. 522–526.

[19] Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613
(Nov 1979). https://doi.org/10.1145/359168.359176

[20] Shamir, A.: Identity-based cryptosystems and signature schemes. In:
Blakley, G.R., Chaum, D. (eds.) Advances in Cryptology. pp. 47–53.
Springer Berlin Heidelberg, Berlin, Heidelberg (1985)

[21] Touati, L., Challal, Y.: Collaborative kp-abe for cloud-based internet
of things applications. In: 2016 IEEE International Conference on
Communications (ICC). pp. 1–7 (2016)

[22] Wang, X., Zhang, J., Schooler, E.M., Ion, M.: Performance evaluation
of attribute-based encryption: Toward data privacy in the iot. In: 2014
IEEE International Conference on Communications (ICC). pp. 725–730.

9

