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Abstract—Network topology verification in Software-Defined
Networks (SDN) poses a significant challenge, as vulnerabilities
can allow attackers to deceive the controller and manipulate
the data plane into incorrect topologies, thereby endangering the
entire network’s security. Current solutions fail to guarantee both
security and efficiency in the verification process, often resulting
in damaging user traffic. With the aim of solving joint objectives,
in this paper, we introduce PathSafe, a novel tool constructed
on top of the existing controller frameworks designed for secure
path verification in SDN environments. It enables the verification
of all available paths between two points in the network and
ensures a secure process. Our approach requires a data plane
component for real-time packet monitoring at line speed and
a control plane verification step. Our research demonstrates
that PathSafe effectively mitigates security risks in compromised
switches and host scenarios. Alongside a theoretical exploration
of this challenge, we present a proof of concept implemented in
P4, a common language for programmable data planes. Results
obtained in Mininet underscore the practical applicability of
PathSafe that, compared to alternatives, reduces overhead in the
verification process while maintaining a limited execution time.

Index Terms—Software-Defined Networks, P4, Path Verifica-
tion, Security Services

I. INTRODUCTION

Software-Defined Networks (SDN) have gained signifi-
cant momentum in enabling more dynamic, agile and pro-
grammable networks in data center, cloud, telecommunications
and enterprise environments [1]. SDN advocates for the de-
coupling of the network’s intelligence (i.e., the control plane)
from its data forwarding functions (i.e., the data plane). The
SDN controller manages core services essential for critical
network functions, such as routing and topology discovery.
Through SDN applications that operate on top of the controller
and a standard southbound interface like OpenFlow [2], the
SDN controller can easily reprogram and collect statistics
from networking devices. These applications enable network
operators to implement high-level networking tasks, as well
as security and privacy applications [3]], [4]], without altering
the SDN controller’s underlying logic. However, despite its
advantages, SDN also expands the network’s attack surface
and introduces new security challenges. Additionally, due to
fundamental differences between traditional and SDN archi-
tectures, existing security solutions for conventional networks
cannot be directly applied to SDN environments [5].

In this paper, we focus on topology attacks, which seek to
compromise the controller’s view of the network topology and
are especially dangerous in SDN-based networks. Recent re-
search has revealed that SDN topology services lack sufficient
security mechanisms [6]-[8]. Attackers have exploited the
weaknesses in the Link Layer Discovery Protocol (LLDP) [9]]
to tamper with the controller’s view of the network topology to
perform eavesdropping, Man-In-The-Middle (MiTM) attacks
or bypassing middleboxes [10], [11]. The consequences of
these attacks can be severe, as SDN core services and ap-
plications rely on accurate topology information to function
correctly.

To address these issues, various solutions have been pro-
posed, which can be divided into two groups: (i) those that
attempt to fix the identified security problems by modifying
the LLDP protocol implemented within the SDN controller
(e.g., [6], [8]], [12]]), and (ii) those that propose alternatives
to the LLDP protocol to be included within SDN controllers
(e.g., [13[, [14]])). However, both types of solutions suffer
from drawbacks. Firstly, directly implementing changes or
new solutions within the SDN controller is undesirable, as
it may introduce new security vulnerabilities into the ’brain’
of the network. Moreover, these solutions are unlikely to be
adopted in practice, as evidenced by the fact that none of the
well-known open-source SDN controllers have integrated any
of the proposed countermeasures to defend against topology
attacks. Secondly, none of these solutions can verify the
trustworthiness of entire networking paths, rendering them
unable to detect complex topology attacks that span multiple
hops.

We advocate for a solution capable of verifying entire
paths between endpoints, implemented as an SDN application,
without requiring any modifications to the SDN controller.
Some existing path validation solutions involve the collection
of packet counts according to the relevant matching rules [[15]],
[16]. Another approach requires adding a validation header
to each packet to record the switch information along its
transmission path [[17]-[20]. However, these solutions perform
per-switch operations on the CPU, leading to significant com-
putational overhead, and generate high network overhead when
handling large volumes of packets, which impacts both user
traffic and switch-to-controller communication.

To tackle the above challenges, this paper introduces



PathSafe, a tool designed to verify available network paths
between any pair of switches and determine the number of
hops involved. The solution comprises a lightweight data
plane component that runs on each switch, responsible for
monitoring packets and marking probe packets at line speed,
and a control plane component that collects probes and verifies
the correctness of paths. To make it control plane agnostic, the
solution is built on top of the SDN controller at the application
level rather than modifying it directly. This approach miti-
gates the insecure and inefficient topology services currently
available in the controller. We designed PathSafe to be further
customized. For example, since the overhead is minimal, it can
verify paths either periodically or on-demand. Similarly, Path-
Safe can verify all paths between two nodes, all nodes, or only
a subset of paths. We designed the solution to be compatible
with P4-enabled switches, a domain-specific programming lan-
guage for specifying the behavior of network data planes [21]],
[22], where it was then implemented in a prototype. Results
obtained over the Mininet emulator confirm the lightweight
approach and implementation, which leads to minimal over-
head and execution time compared to state-of-the-art solutions
such as [[17], [20]. The results also validate the scalability of
PathSafe at the increasing of sizes and paths to verify.

The rest of the paper is structured as follows. We dis-
cuss similar and existing solutions in the context of network
topology verification in Section |[II We overview the PathSafe
functionalities in Section[[TI] and the security threats addressed
in Section We then evaluate the impact of PathSafe over
the P4 testbed in Section and conclude the paper in
Section

II. RELATED WORK

The efficacy and efficiency of network management and
programmable data planes hinge on monitoring various net-
work parameters [1]], including bandwidth, latency, capacity,
the number of hops, and the network topology. These metrics
allow the controller to assess network behavior and enact
real-time modifications to optimize performance. In fact, SDN
protocols are not designed to validate packet paths, allowing
compromised switches to divert packets from their intended
paths, leaving the controller in the dark [7], [23]].

The absence of robust authentication mechanisms for both
the controller and LLDP packets is a fundamental vulnerability
in SDN [24]. Extensive research efforts have been directed
towards mitigating the highlighted security concerns [25]], [26].
One approach consists of counting packets at the data plane
level. In fact, as packets traverse each hop and undergo rule
matching at each switch, the match count for a network flow
should remain consistent across all hops. Solutions such as
FADE [27], iFADE [15], and FOCES [16] install dedicated
rules to collect flow statistics, then verified by the controller
to detect any irregularities. These methods are sensitive to
packet losses and network congestion, which factors can lead
to inaccurate packet counts in SDN switches.

Another approach to path validation in SDN involves ap-
pending a validation header to data packets. SDNSec [17]

and RuleOut [18]] propose that switches embed their proofs
(or forwarding rules in the case of RuleOut) into a validation
header, which can then be sent to the controller for validation.
A Verifying Rule Enforcement (REV) technique [19], [28]]
enhances path validation by encrypting switch identification
into the validation header upon packet reception. Additionally,
REV employs a compressive message authentication code to
minimize the size of the validation header. L-PVS [20] uses the
validation header but pre-computes the validation information
to reduce data plane computations. However, a critical short-
coming of these studies is the incurred computation overhead
due to the execution of per-switch operations that demand the
CPU and the lack of a comprehensive solution capable of
counteracting common attacks yet offering a viable data-plane
resolution. Moreover, although header compression can reduce
switch storage and bandwidth usage, it burdens the controller
for more computations.

To the best of our knowledge, no existing solutions offer
secure path verification with the level of effectiveness and flex-
ibility provided by our P4-implemented solution. Moreover,
most other solutions rely on specific controller implementa-
tions, which is not a limitation of our approach.

III. PATHSAFE DESIGN

We envision PathSafe primarily as a tool for network
operators to verify segments of an SDN network topology,
providing verified and cryptographically secure information.
In this section, we start outlining the assumptions and potential
attacks we aim to defend against, and then we describe how
we integrate security into network path verification.

A. Threat model

Attacker model. We consider an SDN-based network that
includes an SDN controller with insecure topology services,
making it vulnerable to topology attacks [6]—[8]]. It is assumed
that the SDN network is composed of programmable switches,
meaning the switches can be fully reprogrammed using the
P4 programming language. Adversaries can gain control of
hosts and switches, but the SDN controller is considered to
be trustworthy. This assumption is common, as little could
be done if the SDN controller were compromised. Through
the compromised switches, adversaries can attempt various
types of topology attacks by redirecting traffic over unautho-
rized paths to facilitate eavesdropping, performing man-in-the-
middle attacks, or bypassing security middleboxes [[1O], [[11].

The goal of adversaries is to manipulate the tool’s output,
leading to the reporting of incorrect values to the user, whether
it be the network operator or the controller. Such a scenario
would adversely affect the network, as it would hinder the
user’s ability to make well-informed decisions, potentially
compromising both the performance and security of the entire
network infrastructure. The attacker’s motivations could vary
widely. One possible intent is to deny or disturb the network’s
service. Alternatively, the attacker may seek to manipulate
network traffic to their advantage, such as by directing traf-
fic through links that are under their surveillance, thereby



enabling them to intercept and potentially extract sensitive
information.

Assumptions. We assume that the controller and its connec-
tions to the switches are secure and trustworthy, with a Trans-
port Layer Security (TLS) connection established between the
controller and each switch, ensuring a secure communication
channel for the control plane. This is the usual case in the SDN
environments. Additionally, the controller possesses knowl-
edge of the initial network topology, although this information
remains unverified, lacking security assurances.

B. PathSafe Overview

For a more effective solution description, we refer to an
example topology (shown in Fig. [1) where PathSafe could be
used to verify all paths between switches S and S;. Solid blue
lines represent data plane connections, and green dashed lines
depict control plane connections. Port numbers for each switch
are also indicated. This topology comprises seven switches, a
single controller, and two hosts, providing a foundation for
analyzing our proposed protocol solution and conducting a
security assessment. The chosen topology encompasses the
full range of characteristics typically found in a conventional
network, including the presence of multiple loops, various
paths between hosts, and direct paths devoid of loops.

Protocol overview. The SDN controller is responsible for
creating the probe packets and initiating the protocol, either
by defining the events that trigger its launch or by allowing
network operators to collect information from the available
network paths on demand. The protocol begins when the
controller injects a control packet (i.e., probe) into the data
plane, specifically targeting the initial node of interest. Our
protocol is designed so that the probe navigates through the
data plane, collecting information from each node in the
path until it reaches the designated endpoint. The information
added to the packet is cryptographically protected-preventing
tampering by attackers-by fresh keys generated from a pre-
installed seed using a Key Distribution Function (KDF) within
the controller. The key distribution is securely performed
during the manufacturing process, avoiding the computational
burden of dynamic key exchanges. Subsequently, the final
switch in the path forwards the probe back to the controller,
which then verifies the results. It is important to note that while
the controller plays a crucial role in initiating and concluding
the protocol, its involvement is confined to these stages, with
the bulk of the protocol’s operations being executed solely
within the data plane.

The proposed protocol consists of three main phases: (i) the
initialization phase, (ii) the probe forwarding phase (or mea-
surement phase), and (iii) the verification phase (or termination
phase).

1) Initialization phase: Whenever PathSafe is run, the first
step is for the SDN controller to establish communication
with the two nodes between which the available paths will
be measured. Then, the SDN controller creates a fresh probe
packet directed towards the initial node in the path (S;),
encapsulating the following details:
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Fig. 1: Example topology featuring seven switches (.S; to S7),
two hosts (Host I and Host 2), and an SDN controller.

« Session ID (8 bits). Requesting path verification between
two distinct points in the network and retrieving results
constitutes one protocol session. Users can run PathSafe
multiple times, and to distinguish between different runs,
a unique identifier for each protocol session is necessary.
This identifier facilitates differentiation among concurrent
sessions and allows the programmable switches within
the data plane to manage the control packet forwarding
accurately. Therefore, the controller must randomly select
a value between 0 and 255 to generate a new Session
ID for each protocol run. Once chosen, a Session ID
cannot be reused until the corresponding session con-
cludes. Consequently, up to 256 concurrent sessions can
be maintained.

o TTL value (8 bits). This value is decremented by each
hop and allows the user to define the probe’s lifespan
within the data plane, potentially restricting interest to
paths that do not exceed the TTL value. Additionally,
this value assists the controller in determining the hop
count metric.

o Expiration Time (4 bytes). This timestamp specifies
when the probe packet is deemed obsolete, prompting
the relevant switches to discard the probe afterwards.

e VC (72 bits). A variable component is initially appended
by the first switch and later updated by others. It concate-
nates the egress port of the current hop and the newly
computed MAC with the secret key. 8 bits are used to
express the port, and 64 bits are used to store the MAC.

As indicated earlier, the probe will then traverse a series
of programmable switches until it reaches the terminal node.
During the initialization phase, the SDN controller also in-
forms the destination node of the probe packet’s arrival. To
achieve this, the controller must dispatch a notification packet
to the final switch in the path (S7), where this notification
packet comprises the following information:

o Session ID (8 bits). It matches the identifier allocated in
the probe packet, signaling to the switch that it constitutes
the final node within the path.

o Wait Time (4 bytes). Denotes the duration the terminal
switch will anticipate the probe’s arrival. Beyond this
interval, the switch is instructed to discard any incoming
control packets bearing the corresponding session ID.



These actions effectively mark the conclusion of the proto-
col’s initiation phase.

2) Probe forwarding phase: After receiving the necessary
data, the initial switch in the path can begin executing the
protocol. The data plane probe forwarding process (excluding
possible loopsﬂ) is given in Fig. |2l We can observe how the
probe packets traverse the network to reach the destination
switch S7. The core principle is ensuring the integrity of the
probe as it moves through the data plane, which involves
protecting against unauthorized modification of the probe
packets. To achieve this, each switch (S;) that comes into
contact with the probe will compute a Message Authentication
Code (MAC) using its symmetric key K; over the critical
information contained within the probe. The switch then
incorporates this MAC into the probe itself.
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Fig. 2: Example of PathSafe’s behavior when forwarding probe
packets through the network (at the data plane).

Since each switch is required to perform basic symmetric
key cryptographic operations, such as generating Message
Authentication Codes (MACs), we designed the operations in
PathSafe to be compatible with current switch architectures.
As mentioned earlier, the advent of high-speed programmable
switches allowed easy customization within the network,
improving security, performance, and reliability, but posed
limitations in possible actions of the data plane. Therefore,
we designed hashing operations that can meet the requirements
for running entirely in the data plane and at line rate while
satisfying high security for short-input MACs (more details in
Section [V])). More concretely, before passing the probe to the
next hop, every switch in the path will carry out the procedures
specified in (T)).

B = SessionID || ExpTime
MAC(S;) = MACk,(TTLs, || egr(S:) || VC(Sy) || B)
VC(Sl) = egr(Sl) || MAC(SZ)

In (I), the terms and symbols are defined as follows:

(€]

o The B denotes the constant part of the probe packet,
which remains unchanged for every switch along the path

I'This is a realistic scenario as probe P12 3 4 can arrive to switch S5 before
Py 2 3 and thus close the corresponding port for forwarding.

within a single protocol session. This part is referred to
as the base of the probe packet.

o The egr(S;) denotes the identifier of the egress port
through which switch S; forwarded the probe. This
information helps the controller confirm not only the
connections between switches in the network but also the
specific ports through which they are connected.

o The VC(S;) represents the variable components of the
protocol associated with switch .S;.

o The S, represents the previous switch for the correspond-
ing path. It is important to note that there is no prior
switch for the first switch, so the term VC(S,) is defined
as {0}.

e The TTLs, indicates the probe packet’s conventional
Time-To-Live (TTL) value when it is dispatched by
switch S;.

The initial switch on the path attaches the VC(S;) term to the
probe packet. Subsequent switches that receive the probe will
update this term with their respective values, recalculating the
MAC and updating the port number term accordingly. This
process creates a “chain of MACs,” where each new MAC is
generated on the previous one. Thus, when a new switch in the
path updates the MAC, this new MAC includes information
from all preceding switches along the path. When a sequence
of switches 57 to S,, (where n is a natural number) amends
the probe packet, we represent this as P; .

Each switch is configured to multicast the probe packet to all
its ports, excluding the port from which the probe originated,
to prevent needless duplication or looping of the probe.
It should be noted that this approach does not completely
solve the issue of probe packets looping within the network
but mitigates it. However, preventing endless loops can be
achieved by utilizing the correct TTL values for the probe
packets. A single switch may receive several probe packets
from the same session, which is anticipated given a switch’s
potential involvement in numerous paths between two network
nodes. As the protocol advances, the path’s terminal node will
begin accumulating probe packets from the relevant session.
It will persist in collecting and storing these packets until
the Wait Time, as specified by the controller at the onset of
the protocol, elapses. Subsequently, the terminal node will
dispatch all amassed probe packets to the control plane (the
controller) for verification.

3) Verification phase: The final stage of the protocol in-
volves the controller executing path verification. The controller
can determine the relationship between the probes and their re-
spective network paths by examining the port forwarding data
within each received probe. Knowing the shared secret keys,
base B, initial T'T'L, the correct path S — Sy — -+ — S,
it can computes its version of VC°(S1) (controller variables
are herein denoted with apex c)

VC®(S1) = egr(S1)||MACY, (TTLS: ||egr(S1)||B), ?2)

and then it can calculate its version of the variable component
for the last switch VC®(S,,) by iteratively calculating (1) for
every switch on the designated path.



The controller compares its computed final VC(S,,) with

the VC(S,,) embedded in the corresponding probe packet.
A match confirms the integrity of the path in question. In
contrast, a mismatch suggests that the controller’s topology
information might be out of date or that some switches in
the network are potentially compromised. When one anomaly
is detected, the controller is aware of a possible attack or
misconfiguration, but it’s not aware of which switch has been
compromised. To this end, it can narrow down the verification
to a subset of switches along S; — So — -+ — S, to detect
the compromised link. This search can be performed with any
known search algorithm. Ultimately, this verification process
is replicated for all paths in the network or only for monitored
ones. At the end of this process, the controller compiles a list
of authenticated paths and associates to each hop count metric
for possible future diagnostics.
Correctness Analysis: If the probe packet follows the desig-
nated path, the validation field VC(S,,) (received from the data
plane) should equal the validation field VC®(S,) computed
in the controller. The variable VC(S,,), at the final hop n is
computed in the following way:

VC(S,) = egr(S»)||MAC(S,) =

3
— egr(5n)|[MACK, (TTLsn legr(Su)|[VC(Sn_1)[|B) ©

where for S; the component is obtained as:
VC(S1) = egr(51)||MACk, (TTLs1|legr(S1)|B) )

The controller, during the verification phase, possesses all the
information needed to compute its version of VC¢(S;) for each
hop in the designated path and obtains VC®(S,,). From
and (3), we observe that VC(S,) = VC(S,) if and only if
the probe packet has traversed designated path S; — Sy —

C. When to run PathSafe?

Given the workflow of PathSafe, we envision that our
solution can be utilized in several ways:

e« When the communication between two switches is
deemed critical, if the network operator finds the prelim-
inary topology information insecure, he can run PathSafe
to verify all available paths or just a subset. Significant
discrepancies between the PathSafe findings and the
initial topology data are sufficient to restrict communi-
cations to certain paths deemed secure while avoiding
others. The ability to process data at line speed is
particularly crucial in this scenario, as it helps to reduce
delays in making routing decisions.

o Up-to-date information on available network paths and
hop counts are essential to make well-informed traffic
routing and load balancing decisions [29]. Given the
dynamic nature of networks, particularly in virtual SDN
settings, the operator can employ the tool to update the
controller’s knowledge of the network’s topology.

« Additionally, the tool can serve for debugging purposes.
In case of performance drops in specific areas, verify-
ing the available network paths can be instrumental in

pinpointing the underlying issues. The high-speed and
dynamic characteristics of SDN environments necessitate
the capability to process information at line speed, ensur-
ing that the controller has access to the most recent data
for troubleshooting and performance optimization.

e The traceroute (or tracert) is a widely-used diagnostic
tool in IP networks that enables network operators to
trace the path from a source to a destination host [30].
Within SDN environments, network operators can utilize
PathSafe for the same purposes. Thanks to its flexibility,
it allows network operators to select a specific path or
to verify all available paths between two points. This is
unlike traceroute, which typically provides only a single
path output. This feature is particularly beneficial for
comprehensive network analysis and troubleshooting.

IV. SECURITY ANALYSIS

In this section, we discuss the protocol’s effectiveness in
countering security threats while identifying any persisting
vulnerabilities or risks. We analyze attack scenarios where
an adversary gains control over one or more switches in the
network to alter the protocol’s output or deny access to its
users, effectively resulting in a Denial of Service (DoS). We
will examine four distinct attack scenarios, considering both
solitary and multiple malicious switches, including an attack
that requires at least two compromised switches.

Probe modification attack. In this attack scenario, the
adversary aims to tamper with the probe packet to mislead the
protocol user. However, such manipulation proves impractical
because the probe packet’s sensitive fields are safeguarded
by a Message Authentication Code (MAC). Any field alter-
ation would result in a discrepancy between the MAC values
computed by the controller and those embedded in the probe
packet. Consequently, the MAC safeguards the integrity of the
probe packet’s information, effectively thwarting any attempts
at modification-based attacks. It is important to note that a
64-bit MAC is sufficient for our application, as one protocol
run (session) usually lasts only a few seconds. Within this time
frame, it is unfeasible for the adversary to create a valid MAC
for a modified probe packet since the session number differs
for each new protocol run, meaning the attacker would have
to start again each time. This security mechanism effectively
prevents manipulation regardless of the number of malicious
switches.

Probe relay attack. In this strategy, the adversary attempts
to deceive the controller by simply relaying the probe packet
through a malicious switch without altering it. By doing so, the
malicious switch would become invisible on the path from the
controller’s viewpoint. For example, consider a scenario where
switch S3 is compromised and forwards the probe P;  through
its port 4. From the controller’s perspective, this could falsely
suggest a direct connection between S and Sg, as depicted in
Fig. 3] with a red dashed line. However, discrepancies might
arise from the analysis of other probe packets. Specifically,
it could be observed that port 2 of S is linked to both
Ss3 and Sg simultaneously. Even if S3 were to relay P o
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Fig. 3: Single switch relay attack example.

through all its ports, it would still result in the same port-
wise inconsistencies. The critical takeaway is that a single
physical port can only establish a connection to one switch at
any moment.

To circumvent such inconsistencies, the adversary may opt
to relay the probe packet through a specific port (e.g., port 4 in
Fig. [3) while refraining from forwarding P; » 3 through ports
2 and 3. This action effectively suggests the non-existence of
links S5—S,4 and S3—S5. From the controller’s perspective, this
creates no discrepancies based on the probe packets received.

The presence of a malicious switch thus remains undetected
by the controller until it exposes itself by forwarding traffic
through different ports than those used for the probe packets,
leading to observable discrepancies. Therefore, the impact
of such an attack is relatively limited since the malicious
switch’s activities are restricted to merely relaying packets.
This constraint significantly limits the attacker’s ability to
disrupt network traffic, as the switch must remain concealed,
engaging solely in packet relaying. For example, should the
attacker route regular traffic through an unverified link, such
as from S3 to S5, this action would be unexpected by both
the controller and S5 (presuming the controller has informed
each switch of legitimate links). The non-compromised Ss
would then detect packets arriving on an unverified port and
could promptly notify the controller of this irregularity, thereby
enabling the controller to identify the inconsistency.

In the scenario involving multiple malicious switches, if
they do not collaborate, the attack scenario is treated as
multiple individual attacks. Otherwise, the attacker can create
a “relay chain,” enabling the continuous relay of probe packets.
As a result, the malicious switches have a significantly wider
range within the network, allowing them to relay packets
across longer distances. However, they are still restricted to
relaying only one probe packet per switch, similar to the
previous example. As discussed earlier, if any switch were
to forward more than one probe, the controller could detect
inconsistencies in port connections.

Denial-of-Service attack. In a Denial of Service (DoS)
attack, the attacker’s objective is to interrupt or hinder the
service facilitated by the protocol. A malicious switch can
launch a DoS attack by failing to forward any probe packets.
The controller can detect such an attack by validating various
paths and isolating the malicious switch. It can attempt to
verify alternative routes that exclude the compromised switch
from the network, thereby identifying it. It should be acknowl-
edged that this method necessitates multiple iterations of the

protocol and incurs additional time expenditure.

In the case of multiple malicious switches that refuse
to forward probe packets, it becomes challenging for the
controller to draw clear conclusions from the received probe
packets and accurately identify the malicious switches. This
leads to an increased number of protocol runs to identify the
source of the problem.

Out-of-band attack. The out-of-band (OOB) attack sce-
nario necessitates the collaboration of at least two malicious
switches capable of communicating via an out-of-band chan-
nel. The basic idea is that the attacker controlling two com-
promised switches can establish a separate, new, out-of-band
link using alternative communication methods. This alternative
communication pathway might leverage technologies such as
5G or Wi-Fi networks. For this to be possible, both switches
need to possess authentic yet unused ports—a plausible as-
sumption given that certain programmable switches, such as
the Intel Tofino 2, can support up to 256 ports [31f]. In this
scenario, the compromised switches follow our protocol and
forward their corresponding probe packets to both normally
utilized ports and ones used for an OOB link. The link created
by the attacker acts as a genuine, real link in the network
(assuming the performance of the alternative communication
is reliable). Upon examination, the controller is misled into
believing in the existence of a direct connection between the
compromised switches. This attack modality is considerably
more viable in a physical SDN setup, which is the focus of
our analysis. It should also be noted that this type of attack is
less likely to occur, demands advanced capabilities from the
attacker, and is barely addressed by other studies, e.g., [[17].

V. PROTOCOL IMPLEMENTATION WITH P4-ENABLED
SWITCHES

In this section, we delve into the implementation details of

our prototype over the P4 data plane.
Programming P4 switches. The advent of SDN brought flex-
ibility and programmability to networks; however, traditional
networking devices, such as fixed-function ASICs, lacked this
same flexibility. In response, P4 [21] emerged in 2014 as
a domain-specific language tailored for networking devices,
designed to provide reconfigurability, protocol independence,
and target independence.

A P4 program describes the whole workflow of packet-
forwarding devices. Whenever a packet is received, custom
headers are extracted by the Parser following predefined se-
quences based on header types. Then, it is passed to an ingress
match-action pipeline, which determines the forwarding deci-
sion and sends the packet contents and metadata to the buffer.
For each egress port, the packet is processed by an egress
match-action pipeline, where, eventually, the recirculation of
the packet can be established. After further processing, the
packet is reassembled in the Deparser and, finally, forwarded.

BMv2 [32] is the most widely-used software platform for
targeting P4 programs. It serves as a platform for developing
and testing P4 data and control plane programs, offering
extensive flexibility and enhanced debugging features. These



advantages make it an ideal choice for developing and testing
P4 programs.

Security functions in the data plane. The implementation
of the security functions on the switches (see Section [III-B)
comprises SipHash, a set of keyed hash functions known as
pseudorandom functions (PRFs), which create a hash from an
input string using a secret key, yielding a result that appears
random [33]]. Because it is designed for high-speed execution,
it efficiently fits the P4 constraints and is particularly efficient
with short input strings. In fact, it is the only hash function that
can be executed in a single pass through the Tofino pipeline.

The operation of SipHash can be summarized as follows:
It processes an input string along with a 128-bit secret key,
initializing four internal 64-bit state variables. The SipHash-
c-d variant then executes ¢ compression rounds followed
by d finalization rounds on the input. These rounds, called
SipRounds, are identical but include additional pre-processing
and post-processing steps at certain points.

We integrated these cryptographic primitives into the P4
program directly in the data plane, without the need to run
them in “extern” functions [34]] or in the control plane. To
compute the SipHash over the output port (as described in
Eq. [I), which is not accessible in the Ingress pipeline of
P4, we implemented the main SipHash computation in the
Egress pipeline. When a packet is received, it passes through
the Ingress pipeline, where its Multicast group is identified.
This Multicast group determines the set of ports to which the
packet will be forwarded, generating multiple copies that are
then sent to the Egress pipeline. In the Egress pipeline, the
hash computation is performed using the actual output port
of each packet, performing the SipHash computation in one
pipeline pass.

VI. PATHSAFE EVALUATION
A. Experimental Settings

To experimentally assess the impact of PathSafe compared
to other state-of-the-art, we run experiments over Mininet [35]],
a well-known network emulator, to create realistic network
In particular, we perform the experiments over (i) a small
topology (Fig. |1) and (ii) one larger from the CAIDA Internet
Topology Data Kit (ITDK) dataset [36] (AS 13576), which
comprises 30 nodes with up to 90 concurrent paths for
verification.

We compare our work against two state-of-the-art solutions:

o SDNSec [17]: for every packet in the network, each
traversed switch computes two AES-CBC-MACs, one to
update the path validation field and one to append as
a Forwarding Entry for path enforcement. The overhead
per packet is composed of a fixed size of 22 bytes and a
variable cost of 8 bytes-per-switch.

o LPV-S [20]: it adds a fixed header of 16 bytes to every
packet in the network. Each traversed switch updates the

2The entire source code is available at |https:/github.com/dahara98/
PathSafe_2024

header fields, XOR-ing the old values with its key and
its egress port key.

In these solutions, each path is verified and the last switch is
responsible for sending every header to the controller.

B. Overhead and execution time in different settings

In the first set of experiments, we assess the overhead
in the network, defined as the maximum amount of Kbps
transmitted in a link during the execution of the protocol.
For all experiments, we run 20 runs in each topology, and
then we plot the average and the 90% confidence interval. We
start considering the impact of the number of packets traveling
the network during the execution of the protocols, reporting
such overhead in Fig. ffa] For this experiment, we consider a
path length of 7 (but similar results were observed for other
path lengths). SDNSec introduces the most overhead, as 78
bytes are totally added to each packet. L-PVS’s overhead is
heavily reduced, as it only uses 16 bytes, but still linearly
grows with the number of packets. On the contrary, with
PathSafe, we can monitor paths on a frequent basis, and this
strategy has the advantage of reducing overhead while still
maintaining security. Moreover, PathSafe sends one probe and
one notification packet with a fixed size to verify multiple
paths, resulting in a fixed overhead of 0.4 Kbps.

In Fig. @bl we represent how the path length impacts the
overhead during a 10-packet flow between two hosts (to
reflect other benchmarks settings [[17], [20]]). In SDNSec, each
switch appends an 8-byte Forwarding Entry to every packet,
incrementing the overhead with each hop. In contrast, L-PVS
and PathSafe do not experience this incremental overhead,
as they use a fixed byte amount. However, our solution can
minimize the overhead by eliminating the need to verify each
flow packet. We then assess the overhead based on the number
of verified paths (Fig. c). Each path is identified by a different
flow constituted by 100 packets. Since PathSafe sends probe
packets via multicast, it can verify multiple paths in a single
execution of the protocol, thereby once again proving to be
the least impactful protocol.

In the second set of experiments, we assess the end-to-end
execution time in the same settings as before, but considering
only one packet per flow to better assess the computational
overhead. The end-to-end execution time is measured as the
time since the first packet enters the data plane until the end
of the verification process at the control plane. Since L-PVS
and SDNSec need CPU to compute the validation field, our
solution achieves the lowest execution time as we perform line-
speed operations in the switch (Fig [5a). Additionally, since
the benchmarks verify each packet, the time required for the
execution linearly grows with the number of packets sent over
the network, while PathSafe takes about 80 ms on average.
cClearly, the execution time may differ when transitioning
from an emulator to a hardware-based device. Nonetheless,
our objective here is to evaluate the performance of different
solutions under equal conditions, and the results unequivocally
indicate that our solution can efficiently scale with larger
networks.
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As far as concerns the dependency of the execution time on
the path length (Fig [5b), the effects of a longer transmission
time and computation due to the longer path are negligible in
our solution, which employs 77 ms on average. This is not true
for the other solutions that experience an increased delay due
to more CPU computations. Moreover, Fig|5c| shows the time
taken when multiple concurrent paths are verified. Once again,
SDNSec employs the most time due to the complex operations
at the CPU. Meanwhile, L-PVS performs lightweight per-flow
operations and computes the hash directly for the assigned
route, making the verification process faster. On the other
hand, our solution shows great scalability by being able to
verify many paths within a single execution, e.g., employing
about 200 ms to verify 30 paths concurrently.

Finally, as emerged from previous graphs, the interval used
in PathSafe in securing paths has a significant impact on the
performance and the security, as the detection of various kinds
of attacks (e.g., probe modification, probe relay, and DoS

attacks) depends on this parameter. However, since results
indicate that the execution time is negligible, the detection time
is mainly (and only) affected by this verification frequency.
Remarking that PathSafe can be executed on-demand (or for
predefined events) or periodically, we now discuss possible
insights for choosing this verification interval.

Fig. [6] shows the overhead introduced by different time
intervals for the verification (a low interval implies a more
reactive solution). A period of 5 s results in about 7 s to detect
the attacks, adding a comparable overhead w.r.t. L-PVS. On
the contrary, running PathSafe every 10 s results in about 12 s
of detection time but less overhead. In conclusion, we argue
that running PathSafe every 5 to 10 s results in a good trade-
off between security and performance, achieving less overhead
and faster verification time w.r.t. SDNSec, and a comparable
performance w.r.t. L-PVS. Thanks to its high flexibility, net-
work operators can use PathSafe while maintaining control
over the bandwidth overhead.

VII. CONCLUSION

In this paper, we introduced the PathSafe tool, designed
to address security concerns in SDN by securely verifying
path information within the network. By leveraging Message
Authentication Codes (MACs), the protocol effectively en-
sures the integrity of path information in different scenarios,
thereby mitigating security threats. Additionally, we presented
a proof of concept implementation using the P4 programming
language. Experiments on Mininet validated the efficacy of
PathSafe’s design and implementation compared to two bench-
marks in terms of execution time and overhead introduced.
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