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ABSTRACT
During the last few years, Implantable Medical Devices (IMDs)
have evolved considerably. IMD manufacturers are now starting to
rely on standard wireless technologies for connectivity. Moreover,
there is an evolution towards open systems where the IMD can be
remotely monitored or reconfigured through personal commercial-
off-the-shelf devices such as smartphones or tablets. Nevertheless, a
major problem that still remains unsolved today is the secure estab-
lishment of cryptographic keys between the IMD and such personal
devices. Researchers have already proposed various solutions, most
notably by relying on an additional external device. Unfortunately,
these proposed approaches are either insecure, difficult to realise
in practice, or are unsuitable for the latest generation of IMDs. Mo-
tivated by this, we present HAT, a secure and practical solution to
provide fine-grained and dynamic access control for the next gener-
ation of IMDs, while offering full control and transparency to the
patient. The main idea behind HAT is to shift the access control
responsibilities from the IMD to an external device under the user’s
control, such as a smartphone, acting as the IMD’s Key Distribution
Center. We show that HAT only introduces minimal energy and
memory overhead and formally prove its security using Verifpal.

CCS CONCEPTS
• Security and privacy → Cryptography; Key management;
Authentication; Security protocols; • Computer systems orga-
nization → Embedded and cyber-physical systems.
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1 INTRODUCTION
Millions of people worldwide rely on Implantable Medical Devices
(IMDs), such as pacemakers, insulin pumps or neurostimulators, to
monitor and treat a broad range of chronic conditions. Over the past
decade, most IMDs have started incorporating radio transceivers
to allow external devices to wirelessly collect patient health in-
formation and/or reprogram the IMD’s settings without requiring
invasive surgery. In the first generation of wireless-enabled IMDs,
the set of devices an IMD could communicate with was limited only
to dedicated and specialised device programmers (e.g., [8]) and base
stations (e.g., [29]) manufactured by the IMD vendor. Both device
programmers and base stations had a built-in programming head
that activates the IMD’s wireless interface when it is placed above
the implantation site for a few seconds. Once activated, the IMD and
the programmer/base station communicate with each other over
a long-range communication range (2-5 meters away). Previous
work discovered that these first generations of IMDs with wire-
less capabilities typically rely on proprietary (i.e., non-standard)
wireless communication protocols with no security mechanisms
embedded [15, 23, 25–27]. Consequently, anyone who can get in
close proximity of the patient could activate their IMD and send
valid commands to it.

Unlike the first generations of such IMDs, the latest generation
can communicate with a much broader set of devices using stan-
dard wireless technologies like Bluetooth Low Energy (BLE). The
advantage of standard communication technologies over propri-
etary wireless communication protocols is that they are supported
by most personal, commercial-off-the-shelf devices such as smart-
phones or tablets. Therefore, the set of devices that can be connected
to the latest generation IMDs is no longer limited to a few dedicated
and specialised devices. This translates to today’s IMDs being able
to interface with a much broader set of devices, enabling the reali-
sation of new use cases towards more effective and personalised
healthcare. However, this evolution towards open and standard
communication systems also puts IMD security at stake. While
the security of the latest generation IMDs has not yet been inves-
tigated in depth by the research community, it is evident that the
increased connectivity of IMDs enlarges the attack surface signifi-
cantly and brings new security risks and threats to the IMD ecosystem.
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Cryptographic solutions are thus needed to secure the wireless
communication channel between the IMD and personal devices.
However, securing the data in transit first requires the establish-
ment and management of the cryptographic keys used to bootstrap
the secure communication channel. This is a challenging problem
and solving it is the main goal of this paper.

Research gap. Several works have proposed key establishment
solutions for IMDs (see Section 9 for more details). Unfortunately,
past works found that existing security solutions are either insecure
(e.g., [24, 34, 42]), undesirable to patients [10] or not technically or
practically viable (e.g., [13]). Besides, current solutions are tailored
for the first generation of wireless implants where the IMD typically
interacts with a very small and fixed set of external devices. Hence
they are unable to provide dynamic and fine-grained access control
as required by novel personal healthcare use cases.

Motivation. During their lifetime, the latest generation of IMDs
will need to establish keys with multiple personal devices with
whom no prior trust relationship exists. For example, during the
lifetime of the IMD, the patient may change smartphones a few
times. When this happens, the old smartphone should be revoked
and the new device should get access to the IMD. Similarly, imagine
that the patient’s usual doctor is not available for an appointment,
and the patient needs to go to one of her colleagues. In that case,
the patient’s usual doctor could provide her colleague with the
necessary permissions needed to access the device for a given
time. A similar situation would occur when the patient would get
ill on holiday, or when an emergency would take place. In these
cases, another doctor would need temporary access to the IMD.
It is worth noting that doctors will also most likely change their
personal devices during the IMD’s lifetime, requiring the revocation
of the doctor’s former personal device and granting access to the
new device. Another scenario that could occur, is that the patient
would change the hospital or doctor, for example, when moving
out to a new city or country. If this would happen, one might want
to revoke access to all devices of the former hospital where the
patient was going and grant access to the doctor’s personal device
in the new hospital. All these examples show the need for dynamic
and fine-grained access control. In this context, it is fundamental
for patients or caregivers to have full control over which personal
devices can be connected to an IMD at a given time and have the
ability to revoke devices or temporarily allow a personal device
access to the IMD .

Goals and challenges. To the best of our knowledge, we are
the first to present a secure and practical solution for the latest
generation of IMDs. Inspired by the principle of least privileges,
the core idea of our solution is to keep the number of devices that
can access the IMD as small as possible at all times while guaran-
teeing access to the IMD by legitimate users whenever needed. In
designing our solution, we had to overcome two main challenges:

First, IMDs lack I/O interfaces, such as a keyboard or a display,
and are not physically accessible once implanted. As such, IMDs
are not capable of evaluating access control requests from personal
devices. This becomes particularly challenging if the set of external
devices that want to communicate with the IMD changes over
time. Also because of these reasons, conventional device pairing
solutions, for example as specified in the BLE standard, cannot be
applied in the context of an IMD; they would result in the use of a

fixed password or PIN (which is insecure) or would shift the pairing
problem towards using an out-of-band channel (which is not further
specified in the standards). Based on these observations, we propose
to outsource the access control functionality to an external device
operated by the user (or someone they trust). Although there are a
few key establishment solutions proposed using external devices
(see Sect. 9.1 for more details), these are either insecure or require
buying and wearing additional hardware. In contrast, our approach
solely relies on the use of an external device that the user already
has to support key establishment.

Second, one also needs to consider that access to the IMD is
strongly linked to a social context. A patient might allow the smart-
phone of a family member or an attending physician to connect to
his IMD, but not the personal device of another (unknown) care-
giver. As a result, centralised key management solutions, such as
Kerberos, where one would use a central cloud-based Key Distri-
bution Center (e.g., managed by the IMD vendor), are not suitable.
Indeed, it would be impossible for a centrally managed KDC to
know which external devices should be granted access to the IMD
at a given time. Similarly to the first challenge, this becomes even
more challenging when the set of personal devices that can com-
municate with the IMD changes over time, as new devices need to
get paired with the IMD and some devices may need to be revoked.

CONTRIBUTIONS
In this paper, we present HAT, a secure and easy-to-deploy solution
to establish andmanage cryptographic keys for the latest generation
IMDs. The main contributions of this paper are the following ones:

• Ability to delegate the IMD’s access control and key manage-
ment operations to a security manager – an external device
under the patient’s control (or somebody they trust) – that is-
sues access tokens to securely establish session keys between
personal devices and the IMD.

• Introduce a secure key-exchange protocol, relying on a hash-
based access token, between personal devices and the IMD.

• Leveraging on the prior work in embedded security, we
evaluate the security of our scheme and conclude that our
solution can be implemented on any IMD with minimal
energy and memory overhead.

• Finally, we formally prove the security of HAT using
Verifpal [21].

2 THREAT MODEL AND ASSUMPTIONS
The focus of our work is on the establishment of cryptographic keys
between the IMD and personal devices (e.g., the patient’s smart-
phone or the doctor’s tablet), by relying on an external device. The
main attack we aim to prevent through our work is an imperson-
ation attack where an unauthorised device succeeds in establishing
a secure communication session with the IMD. To that end, adver-
saries will aim to impersonate a personal device, an external device,
or both, towards the IMD. Our threat model considers both passive
adversaries who can eavesdrop on the wireless channel as well as
active adversaries who can additionally modify, inject or tamper
with messages.

We assume that the external device is operated by a user –
potentially by the patient himself – whom the patient trusts to
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take well-considered decisions on behalf of the patient, and has
not been compromised. Similarly, personal devices are commercial
off-the-shelf devices (e.g., a smartphone or a tablet) that are oper-
ated either by the patient or by the medical staff, or by anyone who
wants to pair their device with the IMD. In both cases, these devices
include a dedicated application – installed by the user from an app
store – to perform the security operations required in our solution.
We then rely on existing solutions to enable the user to verify the
correct application is being installed, that other applications run-
ning on the external device do not have access to the cryptographic
material used in the application, and that an external adversary
cannot remotely control the application.

Moreover, we assume that (i) the IMD manufacturer has a secure
process in place to generate and install pre-shared keys in the IMDs,
(ii) there is a secure shipping process in place between the IMD
manufacturer and the hospitals that are using the IMDs, (iii) any
IMD that does get implanted in a patient has not been compromised
by the adversary in advance. Note that these are common assump-
tions widely used by previous solutions, as otherwise, it would be
impossible to protect IMDs against impersonation attacks.

3 HAT – CORE IDEA
The concept behind HAT is depicted in Fig 1. There are three main
steps that need to be executed. The first step is to securely initialise
an external device – i.e., the security manager – to manage the
access requests to an IMD (see Sect. 4.1). It is important to note
that this bootstrapping process only needs to be carried out on
rare occasions. As a second step, the personal device must obtain
an access token from the security manager. Finally, in the third
step, the personal device uses the access token to establish a secure
communication channel with the IMD (see Sect. 4.2). As in Kerberos,
the security manager acts as the entity responsible for generating
and distributing keys. However, one important difference worth
noting is that the security manager does not need to be online at
all times.

3.1 System Overview
Let us first briefly introduce the components and entities that are
part of our solution.

Implantable Medical Devices (IMD): The IMD is a medical
device which is inserted inside the patient’s body through a
surgical operation.

IMD Manufacturer: The IMD manufacturer or the vendor is
the entity responsible for generating pre-shared initialisation
keys of each IMD during fabrication, encoding these values
in QR codes and securely shipping these to the hospitals
together with the IMD itself. In the next sections, we discuss
this process in more detail.

Patient: The person who has an implanted IMD.
Medical Staff: This comprises the hospital’s medical staff,

doctors and caregivers. They are the ones taking care of
the patient, hence they might need access to the IMD’s data
or need to reconfigure it.

Personal Devices: A personal device can be any commercial
off-the-shelf device, such as a smartphone or a tablet, which
can be used to communicate with the IMD. These include all

IMD

Security Manager (External Device)

Personal Device

(1) (2)

(3)

Figure 1: High-level HAT architecture. (1) Initial bootstrap
sequence, only to be run once per security manager. (2) The
security manager granting access-control rights to the per-
sonal device(s). (3) The personal device(s) agreeing on a ses-
sion key with the IMD, without the security manager’s pres-
ence.

the devices used by the medical staff as well as the personal
device(s) of the patient himself.

Security Manager: From a security point of view, one needs
to manage the set of personal devices that are authorised
to establish a secure communication session with the IMD.
The external device responsible for managing this access
control is the security manager. Any device can be used as
the security manager once it has been securely initialised.
For the rest of the paper’s discussion, we will refer to the per-
sonal devices as solely the devices that want to communicate
with the IMD after being granted access from the security
manager, and the security manager being the policy enforcer.
We will denote the security manager as the combination of
the hardware of the external device (e.g., the smartphone of
the user) and a dedicated application running on the device
to perform the necessary operations required in our solution.
In Sect. 4, we describe the functionalities and working of the
security manager in more detail.

Security Manager operator: The person in control of the
security manager (i.e., the one who is manually approving
access control requests from personal devices that want to
communicate to the IMD) is the security manager operator.
Initially, the security manager operator can be the surgeon
who implants the device, which then hands over the con-
trol to the patient (or anybody trusted by the patient). The
security manager operator is also the person who will be
in possession of the cryptographic material (QR codes) to
securely initialise a security manager.

In the rest of the paper, we refer to the security manager as the
external device solely responsible for evaluating pairing requests
and granting access to users to pair with the IMD. Any other device
which wants to pair with the IMD, we denote as a personal device.
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3.2 Delegation of Access Control Functionality
As mentioned before, one of the root causes for the difficulty of
realising key establishment is that the IMD is not capable of eval-
uating access control requests from personal devices due to the
lack of sufficient context and I/O interfaces. We propose to securely
outsource this functionality to an external device – the security
manager – whose goal is to evaluate pairing requests and enforce
security policies on behalf of the IMD. From a high-level point of
view, the security manager will act as a Key Distribution Center
(KDC) – locally controlled by the security manager operator – issu-
ing access tokens for the IMD. Therefore, each time a new personal
device needs to be paired to the IMD, it needs to communicate with
the security manager first. For subsequent communication sessions
with the IMD, the personal device can directly establish new session
keys with the IMD, without interaction with the security manager.
Therefore, only when a new personal device needs to be paired
with the IMD, the security manager needs to be available. It is also
important to stress that at each moment in time, for a specific IMD
there is only one security manager in place; which can be replaced
when needed.

One could argue that relying on a single device to control the key
management operations and access to the IMD would introduce
a single point of failure. However, we argue that there is nothing
wrong with a single point of failure, as long as it fails rarely, and
the consequences of a failure/breach can be easily mitigated. This
is the case in our solution, as a user can decide at any time to
assign the role of security manager to a new external device, and as
such, automatically revoke the former security manager. Secondly,
one can partially mitigate the availability risk by relying on cloud
technology. We discuss both aspects later in the paper.

4 SECURITY MANAGER
In this section, we will zoom in on three important security aspects:
(i) how to initialise a new security manager, (ii) how to use it to
pair a new personal device to the IMD, and (iii) how to revoke a
security manager and replace it by a new one.

4.1 Bootstrapping the Security Manager
When a personal device wants to establish a shared session key
with the IMD, it has to present a valid cryptographic token issued
by the security manager. To verify the validity of this token, the
IMD should have established a trust relationship with the security
manager prior to this. Otherwise, it will be impossible for the IMD
to distinguish valid tokens from forged ones. This trust relationship
will be established during the bootstrap process of the security
manager, which can take place at any time once the IMD has been
implanted in the patient. Inspired by the pairing method proposed
by Stajano and Anderson in their seminal work [41], in HAT the
first device that successfully carries out the secure bootstrapping
process becomes the security manager. Note that this bootstrap
process only happens occasionally.

During the fabrication of the IMD, the manufacturer will gener-
ate a set of unique, IMD-specific cryptographic keys. In particular:
(i) a device-specific 256-bit master secret key𝑚𝑠 , (ii) a 128-bit ran-
dom private key 𝑘 and (iii) multiple initialisation secret key-pairs

(𝑠𝑖 , 𝑠∗𝑖 ). The latter are derived from the master key, a randomly-
generated salt and the index 𝑖 , using a Hash-based Key Derivation
Function (HKDF). In particular, this is done as follows:

𝑠𝑖 = 𝐻𝐾𝐷𝐹 (𝑚𝑠1 | | 𝑠𝑎𝑙𝑡 | | 𝑖 ) (1)
𝑠∗𝑖 = 𝐻𝐾𝐷𝐹 (𝑚𝑠2 | | 𝑠𝑎𝑙𝑡 | | 𝑖 ) (2)

Where,𝑚𝑠 = 𝑚𝑠1 | | 𝑚𝑠2. Here, we take the first 128 bits of𝑚𝑠 to
compute the keys 𝑠𝑖 and the next 128 bits for the keys 𝑠∗

𝑖
. We use 𝑠𝑖

as the initialisation key to our protocol and also to bootstrap the
IMD with the security manager and generate the hash-chain. The
other key of the key pair, 𝑠∗

𝑖
, is used as the key to theMAC algorithm

for authenticating the messages generated by the security manager
for the IMD, thus guaranteeing key-indistinguishably.

The pairs (𝑠𝑖 , 𝑠∗𝑖 ) are stored on the IMD, together with the corre-
sponding IMD’s public key 𝑘P (more details in Sect. 5). Meanwhile,
(𝑠𝑖 , 𝑠∗𝑖 ) and the IMD’s public key are encoded in multiple, sequen-
tially numbered (using the index 𝑖) QR codes that are put on the
inside of the package used to ship the IMD to a hospital∗. To avoid
anybody could read out a key during transportation, the QR codes
are sealed by a layer that can be scratched or peeled away in the
hospital after the package has been unpacked. After the IMD has
been implanted, the patient must store the remaining QR codes
securely to be able to revoke or bootstrap a new security manager
at any time in the future, if needed.

To bootstrap the security manager, the security manager oper-
ator just needs to read out the next fresh QR code on the IMD’s
package to learn the cryptographic credentials. Let us assume that
the next QR code available is 𝑖 . Using the initialisation secret 𝑠𝑖 , the
security manager will perform an initial bootstrap protocol with
the IMD, shown in Fig.2, to establish a new secret key 𝑠 ′

𝑖
, and to

create access tokens. The details of the initial bootstrap protocol
will be discussed in the next section. Note that for security reasons,
each key-pair (𝑠𝑖 , 𝑠∗𝑖 ) is only used once during the initial bootstrap
protocol and to securely transport security-critical messages (e.g. to
revoke a personal device). Once the bootstrap protocol has finished,
the key-pair (𝑠𝑖 , 𝑠∗𝑖 ) cannot be used to initialise another security
manager. After bootstrapping the security manager, we would es-
tablish a secure channel to start the security manager granting
access tokens to other devices. We narrate this process in detail in
Sect. 5.1.

As mentioned above, the credentials (initialisation keys) in all the
QR codes that have not yet been used, are securely stored (digitally
or physically). For example, this can be done by storing all the QR
codes in a safe, or by storing the digital information online in a
secure vault. It is important that no unauthorised party can access
these credentials and their availability is guaranteed at all times
(i.e., backups should be available). The only difference between
the security manager and any other device, from a security point
of view, is that the former had access to the QR codes and/or its
credentials, and the latter does not.

∗Both keys 𝑠 and 𝑠∗ are embedded inside a single QR-code and to bootstrap,
a security manager the user only has to scan a QR-code once; we believe this is a
relatively easy task that most users can perform.
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4.2 Using the Security Manager
After bootstrapping it, the security manager will be ready to evalu-
ate pairing requests sent by personal devices. Next, we illustrate
the process through which a personal device pairs to the IMD with
the help of the security manager.

(1) The first step is for the personal device to get temporarily
paired with the security manager. Since both devices are
typically mobile personal devices, one could use any pairing
techniques that offer good security and usability properties.
For example, one could use, for example, Manual Authentica-
tion (MANA) protocols in combination with an out-of-band
channel (e.g., a telephone call between the security man-
ager operator and user of the personal device) [28, 37]. The
result of this pairing procedure is that a secure channel is
established between the security manager and the personal
device (e.g, a TLS channel in case both devices are remotely
connected over the Internet).

(2) The personal device then sends a pairing request to the
security manager over the secure channel.

(3) The security manager evaluates the pairing request and de-
cides whether access to the IMD should be granted. This
evaluation could rely on the consent of the security manager
operator – taking into account social considerations, and/or
be based on contextual properties (e.g, location and time of
the request).

(4) If the pairing request is granted, the security manager cre-
ates a unique cryptographic token and sends this back to the
personal device over the secure channel. At this point, the
security manager’s job ends. From this moment onward, if
access to the IMD is needed, the personal device presents
the cryptographic token to the IMD, which will evaluate the
validity of the token. If the token is valid, the personal de-
vice can then carry out the cryptographic key establishment
protocol we propose in Sect. 5.3 to establish a secret session
key with the IMD.

It should be stressed that the procedure described above has to
be executed only once for every new personal device that needs to
be paired to the IMD. Once a session key is established, one can
rely on conventional protocols to regularly refresh this key.

The overview above shows that the problem of the IMD having
to evaluate access control requests is shifted to the verification of a
cryptographic token. We argue that the latter is significantly less
complex for the IMD, and allows the enforcement of more complex
and dynamic access control policies by the security manager on
behalf of the IMD. In the next sections, we describe the building
blocks of our security solution in more detail.

4.3 Revoking the Security Manager
To guarantee availability, it should always be possible to revoke
the current security manager and replace it with a new device, e.g.,
when it gets stolen or compromised. If this happens, the security
manager operator will scan any of the remaining unused QR codes
and will use the credentials encoded in them to run the bootstrap-
ping protocol. Let us assume the next available QR code to be the
number 𝑖 + 1. The IMD will then check the freshness of the new

initialisation secret key 𝑠𝑖+1 (i.e., that it has not been used before).
As a result, the system will be reset and the IMD will initialise fresh,
independent keys 𝑠𝑖+1 and 𝑠∗𝑖+1 that are also known by the new se-
curity manager. Once the IMD and the new security manager have
established this key-pair, the former security manager is revoked by
default. The IMD will erase the old keys it shared with the revoked
security manager from its memory so that the latter can no longer
use it to communicate with the IMD and/or issue access tokens. By
deleting the key 𝑠𝑖 from its memory, all the tokens computed with
this seed are also rendered useless. The IMD will also delete all the
existing session keys it had stored in its memory, i.e. the access
to all personal devices is revoked. This makes revocation in HAT
effortless, one simply needs to execute the bootstrapping protocol
with new keys obtained from any of the remaining, unused QR
codes.

5 HAT: IMD KEY ESTABLISHMENT USING
HASH-CHAIN TOKENS

In the two previous sections, we introduced the basic concepts of
our security solution and described the high-level communication
flow. In this section, we will now zoom in on the cryptographic
protocols that need to be executed by the security manager and
personal devices, respectively, to communicate securely with the
IMD. In Sect. 5.1 we initialise the security manager with the IMD to
be its cryptographic token manager and set up the initial seed and
hash tokens to be distributed to the personal devices. In Sect. 5.2,
we describe how the security manager evaluates pairing requests
and performs delegation and revocation of session keys. In Sect. 5.3
we describe a secure and practical cryptographic key establishment
protocol on how to agree on a shared session key to secure the
wireless communication link, between the personal device and the
IMD. This protocol combines elliptic-curve-based static-ephemeral
Diffie-Hellman with hash-chain-based access tokens to provide
implicit authentication of the ephemeral Diffie-Hellman key of the
personal device.

Setup. Before explaining the working of our protocols in detail,
let us first introduce the cryptographic primitives we use. For effi-
ciency reasons, we rely on elliptic-curve cryptography to establish
a session key. The domain parameters of the curve #𝐸 (F𝑝 ) include:
a prime finite field F𝑝 , the curve coefficients 𝑎, 𝑏 ∈ F𝑝 , a base point
P ∈ 𝐸 (F𝑝 ) generating a cyclic subgroup of large order, the order 𝑛
of the sub-group and the co-factor ℎ = 𝐸 (F𝑝 )/𝑛. These domain pa-
rameters are publicly known by all devices in the system, including
the IMD. Another public parameter in the system is the pre-defined
public initialisation sequence 𝑖𝑛𝑖𝑡 . This is an arbitrary bit sequence
that triggers the IMD to start the bootstrapping process (Sect. 4.1).
During fabrication of the IMD, a unique master secret key𝑚𝑠 , a set
of initialisation key-pairs (𝑠𝑖 , 𝑠∗𝑖 ), and a random private key 𝑘 are
generated for the elliptic curve cryptosystem. The keys (𝑠𝑖 , 𝑠∗𝑖 ) are
stored on the IMD, together with the corresponding IMD’s public
key 𝑘P. The IMD also stores a counter 𝑐 , which is initialised to
zero, and is used later in the protocol for synchronisation. Finally,
each secret key 𝑠𝑖 , along with the MAC-key 𝑠∗

𝑖
and the public key

𝑘P are embedded in QR codes that are shipped together with the
IMD. We will now discuss the different stages of the HAT protocol.
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IMD Security Manager

Stores: {F𝑝 , 𝑎, 𝑏,P, 𝑛, ℎ}, 𝑖𝑛𝑖𝑡, 𝑠, 𝑠∗, 𝑐, 𝑘, 𝑘P

Reads QR Code: 𝑠, 𝑠∗, 𝑘P

Generates random 𝛼 and 𝛽
𝑖𝑛𝑖𝑡 | | 𝛼 | | 𝛽 | | 𝑀𝐴𝐶𝑠∗ (𝑖𝑛𝑖𝑡 | | 𝛼 | | 𝛽)

Checks correctness of 𝑖𝑛𝑖𝑡

Generates a random 𝑛𝑜𝑛𝑐𝑒

𝑠 ′ = 𝐻 (𝑠 | |𝑛𝑜𝑛𝑐𝑒 | |𝛼)
𝐸𝑠 (𝑠 ′ | |𝛽)

Computes: 𝐻 (𝑠 ′), 𝐻2 (𝑠 ′) ...𝐻𝑚 (𝑠 ′) Computes: 𝐻 (𝑠 ′), 𝐻2 (𝑠 ′) ...𝐻𝑚 (𝑠 ′)

𝑐 =𝑚 𝑐 =𝑚

Figure 2: Initial bootstrap sequence between the IMD and the Security Manager.
5.1 Secure channel between the IMD and the

Security Manager
The first step in our system is for a device acting as a security
manager to pair with the IMD using the bootstrapping protocol we
propose (see Fig. 2). To initialise the security manager, the security
manager operator will first read any arbitrary unused QR code to
obtain the secrets 𝑠 and 𝑠∗, and the IMD’s public key. Note that for
ease of presentation, in the following we focus only on one specific
instance of the bootstrapping phase; due to this, we leave out the
index 𝑖 in our notation. The security manager then generates two
random values, 𝛼 and 𝛽 and sends them along with a pre-defined
initialisation sequence 𝑖𝑛𝑖𝑡 , and the MAC of the three values keyed
using the initialisation secret 𝑠∗. The IMD will verify the MAC of
the incoming message with the key 𝑠∗ and check the correctness of
𝑖𝑛𝑖𝑡 . If the check succeeds, the IMD will generate a fresh random
𝑛𝑜𝑛𝑐𝑒 , to generate the seed and add randomness to the hash-chain.
The IMD will then compute this seed 𝑠 ′ as 𝑠 ′ = 𝐻 (𝑠 | |𝑛𝑜𝑛𝑐𝑒 | |𝛼) by
appending the values 𝑛𝑜𝑛𝑐𝑒 and 𝛼 to the secret key 𝑠 and applying
a cryptographic hash function 𝐻 . The secret 𝑠 ′ is sent along with
𝛽 from the IMD to the device, encrypted using key 𝑠 . The security
manager sends two random values to the IMD, 𝛼 to add more
randomness to the final seed to protect against bad randomness
in the IMD, and 𝛽 to act as a message acknowledgement and to

offer mutual entity authentication. After receiving the message
from the IMD, the security manager will decrypt the message and
confirm the value 𝛽 . The key 𝑠 ′ is then used as the initial seed
for the hash-chain access tokens. Both devices will compute the
hash-chain by repeatedly hashing the initial seed 𝑠 ′ - 𝑚 times,
using the cryptographic hash function 𝐻 . The devices will then
securely store all the𝑚 hashes. The parameter𝑚 should be carefully
chosen during design time in such a way that one realistically
cannot run out of tokens during the IMD’s lifetime. Both the IMD
and the newly initialised security manager will also update their
synchronisation counter 𝑐 with the current value of the topmost
hash stored, i.e., 𝑐 =𝑚. Finally, both the security manager and IMD
store the authentication key 𝑠∗ in their memory, and use it to secure
security management data.

5.2 Key management operations performed by
the Security Manager

Granting access tokens. The security manager is responsible for
authenticating the users of the personal devices (patients and/or
medical staff) and granting access-tokens to their personal devices.
After authenticating, the security manager will send the required
credentials – the IMD’s public key 𝑘P, the hash counter 𝑐 ′ and its
corresponding hash-chain access token𝐻𝑐′ (𝑠 ′) via a secure channel.
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IMD Personal Device

Receives 𝑐 ′, 𝐻𝑐′ (𝑠 ′), 𝑘P from the Security Manager

Generates 𝑘𝑖 and 𝑛𝑜𝑛𝑐𝑒

Computes: 𝑠𝑘1
𝑖
, 𝑠𝑘2

𝑖
= 𝐻𝐾𝐷𝐹 ( [𝑘𝑖 ] · 𝑘P ) = 𝐻𝐾𝐷𝐹 ( 𝑘 · 𝑘𝑖 · P )

𝑛𝑜𝑛𝑐𝑒 | | 𝑐 ′ | | [𝑘𝑖 ]P || 𝑀𝐴𝐶𝐻𝑐′ (𝑠′) ( [𝑘𝑖 ]P)

Verifies𝑀𝐴𝐶

Verifies 𝑐 ′ ≤ 𝑐

Computes: 𝑠𝑘1
𝑖
, 𝑠𝑘2

𝑖
= 𝐻𝐾𝐷𝐹 ( 𝑘 · [𝑘𝑖 ]P ) = 𝐻𝐾𝐷𝐹 ( 𝑘 · 𝑘𝑖 · P )

𝐸𝑠𝑘1
𝑖
(𝑛𝑜𝑛𝑐𝑒)

Stores 𝑠𝑘1
𝑖
, 𝑠𝑘2

𝑖
with corresponding 𝑐 ′ Verifies 𝑛𝑜𝑛𝑐𝑒

𝑐 = 𝑐 ′ − 1

Figure 3: Key-exchange between the IMD and a personal device.
After issuing the hash-chain access token, the security manager will
decrement the current value of its hash synchronisation counter 𝑐 ′.

Key delegation. In HAT, it is possible to further delegate access
control to other devices, by providing them with one or more fresh
hash-chain access tokens. The security manager can provide 𝑛 hash
values to another personal device using a secure channel, along
with all the public parameters, such that the new device can act
as a “delegate of the security manager” for a while (i.e., until all
the 𝑛 tokens are used). The security manager then decrements
its hash synchronisation counter 𝑐 by 𝑛. This delegate will now
have 𝑛 access tokens to distribute to other devices that want to
communicate with the IMD. These devices will proceed to perform
the same key agreement protocol as explained before and denoted
in Fig. 3.

Session key revocation. If the security manager wants to re-
voke the session key of a device 𝑖 to which it has previously granted
access, it sends a revocation message to the IMD with the issued
hash counter value. This message is authenticated using the authen-
tication key 𝑠∗. The IMD then deletes the corresponding session key
𝑠𝑘𝑖 shared between the IMD and the device 𝑖 . The revoked device 𝑖
cannot re-establish a session key with the IMD without contacting
the security manager. It can no longer use its old hash-chain token,
as this hash has already been used (i.e., it will no longer be accepted
by the IMD). Thus, it needs to ask for a new fresh hash-chain token
from the security manager again. Similar to the public-key scheme,

if the security manager is physically unable to transmit the revo-
cation message to the IMD, it could be relayed through another
personal device.

5.3 Key agreement between the IMD and the
Personal Device

Every personal device needs to establish a session key with the IMD
to start communicating with it†. The personal device will perform a
key-exchange with the IMD as shown in Fig. 3 to agree on a session
key.

After receiving the required tokens from the security manager,
the personal device can now start a key-exchange protocol with the
IMD. First, it will randomly generate a secret key 𝑘𝑖 and a nonce,
𝑛𝑜𝑛𝑐𝑒 , and then, using the domain parameters of the curve will
compute the point [𝑘𝑖 ]P as its public key. It will create a MAC
of its public key, using the hash-chain access token as the key:
𝑀𝐴𝐶𝐻𝑐′ (𝑠′) ( [𝑘𝑖 ]P). Note that since the IMD also knows the hash
value, it can check the authenticity of this MAC. Next, the personal
device will compute the shared point [𝑘𝑖 ] · 𝑘P = 𝑘 · 𝑘𝑖 · P ,
will discard the 𝑦-coordinate, and take the 𝑥-coordinate and pass
it through a Hash-based Key Derivation Function (HKDF) with a
random public salt, to derive two keys 𝑠𝑘1

𝑖
, 𝑠𝑘2

𝑖
. We are deriving two

†If the personal device and the IMD already share a session key, it can easily be
refreshed at regular intervals using standard cryptographic techniques.
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keys from the computed point to guarantee key-indistinguishably,
by using one key for authentication and key confirmation and the
other one as the session key for actual communication. It will then
send its public key, along with the MAC of the public key, the hash
counter 𝑐 ′ and the 𝑛𝑜𝑛𝑐𝑒 to the IMD. The IMD will first check if
the hash counter 𝑐 ′ it received is lower than the current counter
value 𝑐 stored in the IMD. If it is a fresh value, then it verifies the
MAC message using the 𝑐 ′𝑡ℎ hash in the chain.

If successful, the IMD will update the counter value to 𝑐 ′ − 1, so
that the value can never be reused, and then compute the shared
point 𝑘 · [𝑘𝑖 ]P = 𝑘 · 𝑘𝑖 · P , and also derive two keys from the
𝑥-coordinate of the computed point. Finally, the IMD will encrypt
the 𝑛𝑜𝑛𝑐𝑒 and send it back to the personal device, encrypted using
one of the new shared key 𝑠𝑘1

𝑖
. The IMD will then verify the nonce,

hence providing mutual key confirmation. The IMD will store the
keys (𝑠𝑘1

𝑖
, 𝑠𝑘2

𝑖
) with the corresponding hash-token value in its

memory. After authentication and key confirmation, it will use the
second key to communicate with the device. The lifetime of these
session keys depends on the protocol execution. Session keys that
are not updated for a long time might be susceptible to long-term
leakage. However, frequent revoking of short-span session keys
puts an additional load on the IMD and increases its overall energy
consumption. As IMDs, in general, are energy-constrained devices
and are implanted within a body for several years, for efficiency
reasons we opt to use the session key for a long lifetime and update
it only when required. If a leak would happen, and this is known
to the patient, then the security manager can easily revoke that
particular personal device.

6 EVALUATION
6.1 Security assessment
The security of our scheme is mostly based on the difficulty of
the computational Diffie–Hellman problem [3] over elliptic-curves.
It assumes that the hash function 𝐻 is a pre-image resistant one-
way function and that each QR code is securely stored by the user.
As each IMD is fabricated with a different long-term key 𝑘 and
is located inside the body, retrieving the secret data from an IMD
in use is impractical. We recommend the use of the elliptic-curve
Curve25519, which uses a Montgomery curve defined over a 255-
bit prime field and achieves a security level of 128-bit and to use
AES-128 as the block cipher for the session key encryption. We
also recommend that all random nonces and (session) keys in the
protocol are at least 128 bits long.

We have formally evaluated our cryptographic protocols first
using Verifpal [21], and then validated the results obtained using
ProVerif [4]. Both are widely used formal verification tools within
the research community. In particular, we analysed the security of
HAT against multiple unbounded instances of both passive adver-
saries, who can eavesdrop on a channel to gather information, and
active adversaries who can actively monitor, spoof, inject or tamper
with messages sent between the devices. Our formal analysis results
show that our protocols are secure against multiple forms of con-
fidentiality, authentication and spoofing attacks. A more detailed
overview of our formal analysis can be found in Sect 7.

6.2 Performance analysis on the IMD
The HAT scheme is particularly designed for a resource-constrained
embedded device. To demonstrate this, we analyse the performance
cost of realising HAT on an MSP430, a representative mid-range mi-
crocontroller which is the reference platform for IMD research [36].
We split the energy cost of HAT into computation and communica-
tion costs, and analyse its memory overhead as well.

Computation cost. In HAT, the main cryptographic operations
performed by the IMD are: (1) symmetric-key encryption and MAC
algorithm, (2) hash function, and (3) elliptic-curve (EC) point multi-
plication. Even though multiple hash values have to be computed,
it is well known that the energy consumption of symmetric-key
encryption/MAC algorithm and hash functions is several orders
of magnitude lower than EC point multiplication. An example of
performance results of symmetric-key primitives on MSP430 can
be found in [6]. Therefore, we can safely ignore the cost of all
symmetric-key and hash operations and solely focus on the energy
cost of the single EC point multiplication that is needed in the Diffie-
Hellman key establishment protocol. Previous work has already
extensively shown that it is feasible to implement elliptic-curve
cryptography (ECC) on the MSP430 family of microcontrollers. As
a reference example, we take the work of Hinterwälder et al. [16],
who implemented ECC using Curve25519 on the MSP430F2618,
with a 16-bit RISC CPU, 116 KB FLASH, 8 KB SRAM and a clock
frequency of 16 MHz. Their implementation shows that a single
EC-point multiplication could be executed in 9,139,739 clock cycles
on the MSP430 microcontroller, with a 128-bit security level. The
average power consumption was 14.05 µW and the average en-
ergy consumption was 11.62 µJ. This is orders of magnitude lower
than the energy stored in a simple battery (e.g. 2.5 KJ in a coin
cell). Note that the results cited above are very similar to other
related work [43, 44], which also report an implementation cost
of roughly 9 million clock cycles for an EC multiplication on an
MSP430. To make the scheme more efficient, we have initialised
the public key of the IMD during fabrication, hence using one less
point multiplication.

Communication cost. Besides the computation cost, one also
needs to consider the energy cost of the communication required
in HAT. To analyse this cost, we assume that the communication
between the IMD and a personal device is based on BLE, which is
mostly the case in practice. The MSP430 microcontroller relies on
the CC2560 chip from Texas Instruments to realise BLE commu-
nication. Krug and O’Nils [22] measured the current for sending
or receiving data over BLE on this chip, which is respectively 5.3
and 6.4 𝑚𝐴. Using these numbers, one can compute the energy
cost, which is respectively 18 𝑛𝐽/𝑏𝑖𝑡 and 22 𝑛𝐽/𝑏𝑖𝑡 for sending and
receiving a single bit. Assuming all keys and nonces to be 128-bit, a
unique ID of 64 bits and a counter of 16 bits, the total communica-
tion cost of HAT is 12.51 𝐽 per key-exchange instance. Again, this
energy cost can be neglected compared to the total energy stored
in the IMD’s battery.

Memory overhead. In addition to energy, the impact on mem-
ory is also relevant. The IMD has to store the entire hash-chain,
with 𝑛 values, in its memory. The value of 𝑛 depends on the way
the IMD is used (e.g., based on the patient’s condition), and can
range from several hundred to a few thousand. The total number
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of hashes is a system parameter that can be adjusted depending
on the lifespan of the IMD and should be large enough so that the
IMD can realistically never run out of fresh hash values. However,
the impact on storage is minimal. Jakobsson [18] and Coppersmith
and Jakobsson [9] introduced a novel optimisation technique to
compute and store an entire hash-chain with a given constant seed
and achieved an upper bound of the complexity of𝑂 (𝑙𝑜𝑔2𝑛), where
𝑛 is the length of the chain. By using this optimisation, and assum-
ing a counter of 16 bits (i.e., 𝑛 = 65536), the storage cost 608 bytes,
which is negligible on an MSP430 microcontroller. If we output one
hash value per day, then the chain would last for 180 years. Alter-
natively, one can choose to compute the hash-chain on the fly for
every protocol execution instead of pre-computing the hash-chain
and storing the values in its memory. As computing a hash-chain
is a lightweight operation, we believe this can minimise the total
memory utilisation and optimise it further.

7 FORMAL VERIFICATION OF THE
PROTOCOL

This section provides a detailed explanation of our formal analysis
of HAT. Verifpal [21] is a new software tool used to formally verify
the security of cryptographic protocols which is heavily inspired
by ProVerif [4] and has already been used to analyse the security
of complex protocols such as Signal and the DP-3T decentralized
pandemic-tracing protocol [21]. Verifpal relies on a symbolic model
that does not check for computational soundness and assumes
the cryptographic primitives and functions are perfectly secure.
Apart from being a very intuitive language, another key property of
Verifpal is that it does not allow the design of custom cryptographic
primitives, thereby avoiding well-known mistakes by users. Based
on the properties above, we have opted to use Verifpal to analyse
the security of our protocols.

The first step to formally verify the security of the bootstrap
and key agreement protocols was to model them using Verifpal.
We have attached the formal verification code in an anonymous
repository and also uploaded both protocols to Verifpal’s reposi-
tory - VerifHub‡. In our formal analysis, we consider both passive
adversaries who can only observe the protocol as well as active
adversaries who can additionally modify, inject or tamper with the
exchanged messages. We made multiple small modifications to our
protocol codes so that they could be tailored to Verifpal’s model.
For example, instead of using point multiplication over an elliptic-
curve for a Diffie-Hellman key-exchange, which is not supported by
formal verification tools, we had to use exponentiation over a finite
cyclic group. This is not an issue, as the underlying discrete-log
problem remains the same in both cases. Our Verifpal code does not
include any counters since Verifpal is unable to check for inequality,
greater/lesser than or increment/decrement of variables. Instead of
generating the entire hashchain𝐻 (𝐻 (𝐻 (....𝐻 (𝑥)))), we hashed five
times and used the fifth value for creating the hash-based tokens
and simulating the model. In further analyses, the fourth, then the
third token, and so on, are used. As it is not possible to depict an
out-of-band or a secure channel in Verifpal, we explicitly declared
some constants (like 𝑠) as known, private values in both entities. In

‡https://verifhub.verifpal.com/e3a201bd3f9c8161deefc41a9afde7f4
https://verifhub.verifpal.com/584744e1f37007812c654373740afbf6

practice, however, these values will be retrieved by reading a QR
code, as described earlier in the paper. We have also assumed the
IMD’s public key is pre-authenticated (again, it is retrieved by a QR
code in practice), but not for personal devices.

We formally verified the protocols in the Dolev-Yao model and
we mainly tested and analysed our models for secrecy, authenti-
cation, spoofing attacks, trace and equivalence properties. Trace
properties are defined on each protocol run. The protocol satisfies
such a property when it holds true for all traces. E.g., the fact that
some states are unreachable is a trace property. Equivalence proper-
ties mean that the adversary cannot distinguish two processes. For
instance, one of these processes can be the protocol under study,
and the other one can be its specification. Then, the equivalence
means that the protocol satisfies its specification. Therefore, equiv-
alences can be used to model many subtle security properties. We
observed that Verifpal requires 1200 and 910 milliseconds, respec-
tively, to test the bootstrap and key-exchange models. Our model
passed all the tests and queries challenged to the verifier in both
the passive and active attacker modes and gives 100% confiden-
tiality, authentication and freshness success for all the values and
parameters. Therefore, given the correctness of the cryptographic
primitives being used, our solution provides a secure key-exchange
protocol, with no confidentiality losses and with mutual authen-
tication between all parties. Given Verifpal’s goal of mimicking
and resembling attacks on "real-world protocols", these outcomes
support our claim that the protocol is secure against most known
types of confidentiality and authentication attacks, such as Man-in-
the-Middle, replay attacks, key compromise impersonation§, across
multiple unbounded protocol session executions.

Due to the fact that Verifpal is based on a rather intuitive high-
level language that facilitates the writing and validation of crypto-
graphic protocols, we opted to focus mostly on Verifpal to formally
evaluate the security of our solution. Nevertheless, to further ver-
ify the security properties of HAT, we have also implemented all
our protocols using ProVerif. By doing this, we were able to ob-
serve that both Verifpal and ProVerif provide identical results, again
confirming the security of our proposed solution.

Both the Verifpal and ProVerif codes are available in the following
link: https://gitlab.esat.kuleuven.be/Sayon.Duttagupta/HAT

8 DISCUSSION
In this section, we will discuss the salient features of HAT, apart
from its security benefits, which makes it a robust and practical
solution for the real world.

8.1 Feasibility of HAT
The entire scheme of agreeing on shared session keys or distribut-
ing hash-chain access tokens can be performed by a user-friendly
app running on the security manager and it does not involve any
complex manual procedures. Thus, users do not need to know or
understand the inner workings of our solution to be able to use it.
Moreover, the scheme can be carried out with off-the-shelf com-
mercial personal devices, such as smartphones or tablets, and does
not require any additional devices or bulky controllers. Moreover,

§This property is only achieved if the IMD’s private key is not leaked during the
IMD’s lifetime.

https://gitlab.esat.kuleuven.be/Sayon.Duttagupta/HAT
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HAT allows us to have fine-grained and dynamic access-control
privileges, and we can effortlessly re-initialise new devices and
switch security managers. We also allow multiple different per-
sonal devices to communicate simultaneously with the IMD, and
this communication privilege can be delegated to further devices
and also revoked whenever necessary. This gives the user full con-
trol over the access to the communication channel to the IMD.

8.2 Practical realisation of the security
manager

The security manager plays an important role in the overall security
architecture, as it is the root of trust in the system. From a security
point of view, it is important that the security manager does not eas-
ily get compromised or stolen, and that strong user authentication
is enforced on this device (i.e. only the legitimate user can operate
the security manager). Moreover, to ensure availability, the security
manager should always be available when needed (i.e. when a per-
sonal device needs to get granted access to the IMD), wherever the
patient is. It should also not be a critical point of failure, meaning
that one can securely replace it with a new security manager. From
a usability point of view, the security manager should be easy to
use, have sufficient I/O interfaces (e.g., a keyboard and a display)
for user interaction, not introduce significant extra costs, and it
should not be a burden for the patient to have access to the security
manager (e.g. carrying around a bulky device). From a deployability
point of view, one should preferably use a personal commercial
device that supports standard wireless technologies as a security
manager, without requiring any hardware changes to be made to
this device. Below we detail possible ways to realise the security
manager in practice.

Smartphone-only realisation.When considering the discus-
sion above, the smartphone of the patient would be a good option
to realise the concept of the security manager. Indeed, most people
always carry their smartphone with them, and therefore it is likely
that this device is available when needed (e.g. every time access
from a new device to the IMD should be granted). Most modern
smartphones now also have hardware protection, such as Trusted
Platform Modules (or similar), offering strong security protection
for the keys stored on the device. Moreover, since the IMD is im-
planted in the patient, by default the smartphone and the IMD will
be within the communication range most of the time. Therefore, we
consider this to be the default option to realise the security manager.
However, the main disadvantage of using personal devices is that
they can easily get stolen, lost or damaged. While this is mitigated
by giving several bootstrap credentials to patients, it is likely that
the system needs to be reset, and a new security manager has to be
initialised, multiple times. This would, however, hinder the usability
of the system.

Alternative realisations. Taking into account the disadvan-
tages mentioned above, one could go one step further and store the
cryptographic key of the security manager (or even the multiple
bootstrap credentials) in the cloud. There already exist multiple
commercial cloud-based key management solutions, where secu-
rity credentials are stored securely in an online digital vault. Cloud
providers are now also starting to offer Trusted Execution Environ-
ments (TEE) enabled Infrastructure as a Service (IaaS) solutions to

their customers (e.g., Microsoft Azure Confidential [30]), to increase
the trustworthiness. An interesting advantage of this approach is
that one does not always need to use the same personal device as
the security manager. As long as the device is connected to the
cloud and operated by the correct user, it could act as the security
manager. Obviously, strong user and device authentication should
be enforced to ensure that nobody else but the user can get ac-
cess to the cloud and the keys. This cloud-based approach only
requires that the smartphone has online access to the cloud, which
should not be a problem. Most hospitals offer Wi-Fi connections
and have mobile coverage. Moreover, one should note that access
to the cloud-based security manager is only needed when a new
personal device needs to be paired with the IMD, which will not
happen that often. Also, cloud-based security managers make it
easier to delegate access immediately if an emergency takes place,
due to its constant availability. Moreover, another advantage of
cloud managers is that the bootstrap codes cannot get lost. Due
to the interesting security, usability and deployability properties,
this cloud version of the security manager is a valuable option to
consider.

However, there are also other trade-offs to consider with respect
to the realisation of the security manager. For example, not all
patients have a smartphone or are willing to use their personal
devices for this application. For these patients, one could use a
low-cost dedicated commercial device. This could, for example, be
an embedded device - or even an altered smartphone - with only
one functionality enabled: being a security manager. This device
can then be used offline and stored securely when not being used
or it can be used as the interface to the cloud-based security man-
ager, similarly to the case where the patient uses the smartphone.
However, depending on the exact hardware being used, it might
offer weaker protection of the authentication key and hash chain
of access tokens that are established with the IMD.

9 RELATEDWORK
In Appendix A, we list the design requirements a modern IMD
should have, and we evaluate our work with existing work and we
visually compare them in Table. 1 and show that the prior state-
of-the-art fails to fulfil all these requirements at once. Therefore,
our goal is to design a solution that does meet all these require-
ments. Various solutions have been proposed for establishing a
secure wireless channel between an IMD and a personal device.
These can be split into two categories: pairing solutions relying
on an (additional) external device, and solutions not requiring any
additional device.

9.1 Pairing based on an external device
Various countermeasures have been introduced based on the use
of an external device to mediate between a device programmer
and an IMD. For example, Gollakota et al. proposed an external
device known as a “shield” that jams the messages to/from the
IMD to prevent others from decoding them, while still being able
to successfully decode the messages itself [13]. Nevertheless, the
shield offers limited protection since adversaries could bypass it
by transmitting messages with more power than those sent by
the shield. Furthermore, a multiple-input multiple-output (MIMO)
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eavesdropper could suppress the jamming signal and recover the
data sent by the devices, as shown by Tippenhauer et al. [42]. Xu
et al. presented the “IMDGuard”, a wearable proxy device that
performs an authentication process on the ICD’s behalf using the
patient’s electrocardiography (ECG) signals [45]. However, Rostami
et al. found that the IMDGuard is vulnerable to a man-in-the-middle
(MiTM) attack [34]. In addition, a common limitation of all these
solutions is that they could jam transmissions sent by legitimate
devices. In some countries, jammers are illegal and their use can
result in large fines. Another disadvantage is that one either needs
to use the proxy all the time (as when the shield is used), or every
time a new authentication instance takes place (as when IMDGuard
is used). In our scheme HAT, however, the security manager does
not need to be in the vicinity of the IMD at all times.

These above-existing solutions require the users to carry the
external device whenever access to the IMD is needed (e.g., in the
case of the IMDGuard) or to protect the IMD against attacks (e.g.,
in the case of the shield). In HAT, one only needs the security
manager for access control management, i.e., only when adding or
revoking personal devices. Most of the existing solutions do not
support efficient revocation. We do not require the external device
to be involved in each and every authentication session carried
out between the personal device and the IMD. Also, none of the
existing solutions uses the external device as a cryptographic token
manager, it only uses them to evaluate and authenticate users. In
our work, the security manager is responsible for managing all
the cryptographic tokens being distributed and can authenticate
and revoke access at will. Moreover, none of the existing solutions
allows access to the IMD in the case of a medical emergency. In HAT,
the medical staff can access the IMD in most cases. In practice, IMD
access in an emergency case means that the medical staff requires
access to the security manager. If the patient’s smartphone was the
security manager, one could safely assume that the medical staff
could unlock it via fingerprint or facial recognition. Alternatively, if
somebody else besides the patient is managing the securitymanager,
then a token can be delivered remotely to the medical staff.

9.2 Pairing without any external device
A simple solution for establishing a key between an IMD and a
personal device without relying on an external device would be to
print a code either on the patient’s skin or on a bracelet worn by
the patient. This way, medical staff can obtain the code (from which
the IMD’s key can be derived) and use it to access the patient’s
IMD. However, adversaries can easily obtain the code by being
close to the patient or by stealing their bracelet. Moreover, tattoos
can become unreadable after an accident or refused by patients due
to cultural, social or personal reasons [11], while bracelets can be
lost or damaged. Finally, as bracelets are visible, they can implicitly
reveal the patient’s condition, which could lead to discrimination.
Prior work has been done to establish a cryptographic key with a
personal device through an audio (e.g., [15]) or a vibration channel
(e.g., [1, 20, 38]). The underlying assumption of all these solutions is
that only personal devices in close proximity (a few centimetres) to
the patient’s IMD can receive the audio/vibration signals contain-
ing the cryptographic key. Yet, they have proven to be vulnerable
to security attacks [2, 14]. Besides, these solutions require extra

hardware components in IMDs, which increases their complexity
and size. Apart from these, the use of the body’s physiological
signals (PS) to establish a key between an IMD and personal de-
vices [17, 32, 35] and relying on distance bounding protocols [33]
have also been studied. Dodis et al. [12] and Linnartz et al. [19]
were the first to propose so-called fuzzy cryptographic primitives
to allow two devices that measure slightly different PSs to agree on
a common cryptographic key. Unfortunately, several researchers
have reported that PSs (i) may not provide sufficient entropy in
some circumstances [31], (ii) can be obtained remotely [7, 40] and
(iii) are often used along with insecure security protocols [24]. Also,
unfortunately, the secure implementation of RF-based distance
bounding protocols suitable for a resource-constrained verifier (the
IMD) still remains an open research problem today. Moreover, as
shown by Sedighpour et al., ultrasound-based distance bounding
protocols are vulnerable to wormhole attacks [39]. Finally, another
limitation of distance bounding protocols is that they would require
hardware changes in both the IMD and the personal device, lim-
iting their deployability. Therefore, none of the proposed pairing
solutions that do not rely on an external device meet the practical
requirements imposed by the latest generations of IMDs.

10 CONCLUSION
Implantable Medical Devices strongly rely on wireless commu-
nication for remote monitoring and reconfiguration. While older
generations of IMDs made use of insecure proprietary wireless pro-
tocols, current IMDs use standard wireless technologies. The use of
standard wireless technologies allows to easily connect commercial
personal devices such as smartphones to the IMD, enabling novel
use cases and more personalised medical treatments. Nevertheless,
the initial bootstrap problem – i.e. how to securely establish a cryp-
tographic key between the IMD and one or more personal devices
– had not yet been solved. Key establishment schemes specified in
wireless standards are not compatible with IMDs, and security so-
lutions proposed in the literature are either insecure or not realistic
to deploy in practice.

This paper presents a secure, practical and easy-to-deploy key
establishment solution for the latest generation IMDs that meets
all the security and functional requirements. Our solution provides
fine-grained and dynamic access control with support for revoca-
tion and delegation and enables the realisation of novel healthcare
use cases that are envisioned by the medical community. It also
gives the user full control and transparency over which personal
devices should be authorised to connect to the IMD. Our key estab-
lishment solution relies on the concept of a security manager – an
external device controlled by the user that evaluates access requests
on behalf of the IMD. Our solution builds upon HAT, a secure key
establishment protocol that uses hash-chain-based tokens issued
by the security manager. Compared with other pairing approaches
relying on an external device, our proposed solution is the first one
that does not require the external device (i.e., the security manager)
to be continuously present during communication with the IMD.
Moreover, we demonstrate that our scheme has no significant im-
pact on energy consumption and memory overhead, and can be
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realised on an MSP430, a common low-cost mid-range microcon-
troller similar to the one used in commercial IMDs. Moreover, we
analysed the security of our protocol using Verifpal.
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Table 1: Comparison with other relevant works
Design requirements are ● satisfied, H# partially-satisfied and ❍ unsatisfied.

Design

Requirements

Tattoos &

bracelets [11]

Vibrational &

audio channels

[1, 15, 20, 38]

Physiological

signals

[17, 32, 35]

Distance

bounding

[33]

External

devices [13, 45]

HAT

[this work]

Se
cu

ri
ty

S1 ❍ ❍ ❍ ❍ ❍ ●

S2 ❍ ❍ ❍ ❍ ● ●

S3 ❍ ● H# H# H# ●

S4 H# H# H# ● H# ●

U
sa
bi
li
ty

U1 ● ● ● ● ● ●

U2 ❍ H# ❍ ❍ H# ●

U3 ❍ H# H# H# H# ●

U4 ● ● ● ● ● ●

U5 ❍ ● ● ● ❍ ●

U6 H# ● ● ● H# ●

D
ep

lo
ya

bi
li
ty D1 ● ❍ ❍ ❍ H# ●

D2 ● H# H# ❍ H# ●

D3 ❍ H# H# H# H# ●

D4 ● H# H# ❍ H# ●

Deployability (D). Apart from the solution being cryptographically
secure, that is, no known attacks against the key establishment
solution exist and the security solution achieves at least a 128-bit
security level, the following requirements should also be guaran-
teed:

Strong cryptographic protection (S1): There should be no
known cryptographic attacks against the key establishment
solution, and the false acceptance rate should be very low;
i.e. the probability that an unauthorised device succeeds in
establishing a key with the IMD should be very low. More-
over, the security solution should achieve a 128-bit security
level.

Support for dynamic access control (S2): The key establish-
ment and access control scheme should support a dynamic
set of devices. Multiple devices can establish a secure con-
nection to the IMD, and this list of devices can change reg-
ularly. Besides establishing a key between the IMD and a
new personal device, the following functionality should be
supported:
Revocation of external devices (S2a): It should be possi-

ble to revoke the access of an external device to the IMD.
The revoked device should no longer be able to establish
a session key with the IMD.

Support for delegation (S2b): It should be possible to give
an external device (temporarily) the possibility to establish
a secure communication session with the IMD. The user
should have full control over which external device is
authorised to delegate access to the IMD, and the number
of delegations that the external device could grant.

Key-independence (S3): an external device that has estab-
lished a session key with the IMD should have no knowledge
of the session keys established between the IMD and any
other external devices. This also includes session keys from
past or future protocol instances.

Availability (S4): Availability should be guaranteed at all times;
it should never occur that it is technically no longer possible
to establish any new secure session key to the IMD. Note
that in an IMD setting, availability is absolutely the most
important security requirement.

Limited user participation (U1): No actions by the patient
should be required to establish a fresh secure session key
between the patient’s personal device and its IMD. User
interaction should be required only when a personal device
needs to be added, removed or replaced within the list of
devices that are authorised to communicate with the IMD.

End control by the user (U2): While the participation of the
patient or the doctor should be limited, they should have full
control over which external devices are paired to the IMD.
Without user consent, these pairings should not take place.

Easy-to-use and accepted by users (U3): Any action that is
required by the user, should be easy to perform for an average
user who does not have any technical expertise. Moreover,
the acceptability of the solution among users with different
social backgrounds is key for its widespread adoption.

Memory-wise effortless (U4): The user should not be required
to memorise any passwords or codes, besides those that were
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already required by the use of their personal device (e.g. to
unlock it)¶.

Nothing to carry (U5): The user should not be required to
carry any additional device or wearable, besides the (per-
sonal) devices that the user is carrying anyhow (e.g., smart-
phone or smartwatch).

Easy recovery (U6): It should be easy to recover from the loss
of any personal device and re-initialise the system. Also, the
initial bootstrap procedure should be easy to perform.

Reliability (D1): The security solution should have a low false
rejection rate; i.e., the probability that the key establishment
between the IMD and an authorised personal device fails
should be negligible.

Support for personal devices (D2): The security solution
should support the use of personal devices (i.e. BYOD), both
by the patient or medical staff. These should be commercial,
off-the-shelf personal devices. Neither hardware changes

nor the use of any expensive equipment should be required.
Moreover, it should be possible to replace any of the personal
devices, without sacrificing security.

Scalability (D3): The key establishment solution should sup-
port at least a limited number of personal devices that can
communicate with the IMD. The exact number depends on
the specific use case but is expected to be low.

Lightweight (D4): It should be feasible to implement the key
establishment solution in the embedded platforms that are
currently used by IMDs, taking into account the limited com-
putation power and memory storage. The security solution
should not have a strong impact on the energy consumption
of the IMD. The solution should also consider the IMD’s lack
of input/output interfaces.

¶Note that relying solely on a password that the patient has to remember, can
also hamper availability in some circumstances, e.g., if the patient is unconscious.
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